US009065839B2

a2 United States Patent 10) Patent No.: US 9,065,839 B2
Miller (45) Date of Patent: Jun. 23, 2015
(54) MINIMALLY BUFFERED DATA TRANSFERS g,jé‘lhgg? : Z }ggg é(})IShi |
K K tayer et al.
BETWEEN NODES INADATA St i s
5,815,793 A 9/1998 Ferguson
5,826,262 A 10/1998 Bui et al.
(75) Inventor: Douglas R. Miller, Albert Lea, MN (US) 5,826,265 A 10/1998 Van Huben et al.
5,835,482 A 11/1998 Alle_n
(73) Assignee: International Business Machines g,ggg,ggi ﬁ }; }ggg TAZVIII et alél
: s s vani et al.
Corporation, Armonk, NY (US) 5875190 A 211999 Law
. 5,912,893 A 6/1999 Rolfe et al.
(*) Notice: Subject to any disclaimer, the term of this . crecta
patent is extended or adjusted under 35 (Continued)
U.S.C. 154(b) by 2306 days. OTHER PUBLICATIONS
(21) Appl. No.: 11/865,981 “MPI-2: Extensions to the Message-Passing Interface,” Message
Passing Interface Forum, Nov. 15, 2003.*
(22) Filed: Oct. 2, 2007 (Continued)
(65) Prior Publication Data . . .
Primary Examiner — Andrew Georgandellis
US 2009/0089328 Al Apr. 2, 2009 (74) Attorney, Agent, or Firm — Biggers Kennedy Lenart
51) Int.Cl Spraggins, LLP
GO6F 15/16 (2006.01) (57) ABSTRACT
HO4L 29/08 (2006.01) .
GOG6F 9/54 (2006.01) Methods, apparatus, and prqducts for mlmma.lly .buffered
(52) US.Cl data transfers between nodes in a data communications net-
CPC) HO4L 67/1097 (2013.01); GOGF 9/546 work are disclosed that include: receiving, by a messaging
"""""" T (2013.01) module on an origin node, a storage identifier, a origin data
(58) Field of Classification Search ’ type, and a target data type, the storage identifier specifying
CPC GOGF 9/546 application storage containing data, the origin data type
USPC. .. e describing a data subset contained in the origin application
See a hcatlon ﬁle forcomlete searchhlsto storage, the target data type describing an arrangement of the
PP P RE data subset in application storage on a target node; creating,
(56) References Cited by the messaging module, origin metadata describing the
origin data type; selecting, by the messaging module from the
U.S. PATENT DOCUMENTS origin application storage in dependence upon the origin
metadata and the storage identifier, the data subset; and trans-
4,860,201 A 8/1989 Stolfo et al. mitting, by the messaging module to the target node, the
‘S"g ég’?gg ﬁ g;}gg? ggfg;tzg?l' selected data subset for storing in the target application stor-
5:063:562 A 11/1991 Barzilai et al. age in depegdence upon the target data type without tempo-
5,005,444 A 3/1992 Motles rarily buffering the data subset.
5,218,676 A 6/1993 Ben-Ayed et al.
5,347,450 A 9/1994 Nugent 18 Claims, 9 Drawing Sheets

Origin Node 600

Data 615

[Application 155

Origin Application
Storage 808

Origh ing Modile 160]|

Recelve A Storage 1D, A
Complex Crigin DT, And A
‘Complex Target 0T 700

Storage

[complex 0rigin DT g22 |

Creals Origin Meladata
Describing The Complex
Qrigin DT 702

Seec T Degandencs Uen

“The Origin Metadeta And

Storage ID, A Susset OFThe
Data 704

Messaging Moduk On The Target Node 706

Transmit The Selected Subset Of The Data To A Target

Configuously Store The Selected Subset OF The Data
In A Temporary Buffer On The Origin Node 708

{[originMeadatasez]|
Subset Of Data 48
—_——

B

-Termporary
Buffer 646

In A Single Data Transfer Operation, The Subset
‘The Complex Origin Data Type 710

Transmit, From The Temporary Buffer On The Origin
The Data Along With The Origin Metadata Describing

I —
Subset Of Data 648

S Target Messaging Module 612]|
rigin
Memda‘;w Store Subset OF Data In Target Application
Storage In Dependence Upon The Complex Target
Subset Of Data 645 Data Type 712
TargetAppicaon 01 2 3 4 5 6 7
Storage 14
Applicaton 506

Target Nods 504)|

US 9,065,839 B2

Page 2
(56) References Cited 2004/0001508 Al 1/2004 Zheng et al.
2004/0015494 Al 1/2004 Basso et al.
U.S. PATENT DOCUMENTS 2004/0098373 Al 5/2004 Bayliss et al.
2004/0107240 Al 6/2004 Zabarski et al.
5.018.020 A 6/1999 Blackard et al. 2004/0111398 Al 6/2004 England et al.
5033.475 A 8/1999 Iwata 2004/0246897 Al 12/2004 Ma et al.
5937201 A /1999 Matsushita et al. 2004/0255002 Al 12/2004 Kota et al.
5.053.336 A 0/1999 Moore et al. 2005/0053034 A1 3/2005 Chiueh
5982771 A 11/1999 Caldara et al. 2005/0060462 Al 3/2005 Ota
5,995,503 A 11/1999 Crawley et al. 2005/0138161 Al 6/2005 McDaniel et al.
5,999,734 A 12/1999 Willis et al. 2005/0182834 Al 82005 Black
6006032 A 12/1999 Blandy et al. 2005/0278453 Al 12/2005 Cherkasova
6,047,122 A 4/2000 Spiller 2006/0002424 Al 1/2006 Gadde
6.057.839 A 5/2000 Advani et al. 2006/0018283 Al 1/2006 Lewis et al.
6.101.495 A 8/2000 Tsuchida of al. 2006/0059196 Al 3/2006 Sato et al.
6.115357 A 0/2000 Packer ot al. 2006/0075067 A1 4/2006 Blackmore et al.
6.118777 A 9/2000 Sylvain 2006/0107262 Al 5/2006 Bodas et al.
6.126.331 A 10/2000 Komatsu et al. 2006/0203739 Al 9/2006 Padmanabhan et al.
6.167.490 A 12/2000 Levy et al. 2006/0292292 Al 12/2006 Brightman et al.
6,182,183 Bl 1/2001 Wingard et al. 2007/0014316 Al 1/2007 Ryu et al.
6.253.372 Bl 6/2001 Komatsu et al. 2007/0016589 Al 1/2007 Hara et al.
6.336.143 Bl 1/2002 Diedrich et al. 2007/0094429 A1 4/2007 Wingard et al.
6343339 Bl 1/2002 Daynes 2007/0121511 Al 5/2007 Morandin
6,438,702 Bl 8/2002 Hodge 2007/0179760 Al 82007 Smith
6.490.566 B1 12/2002 Schmidt 2007/0260746 Al 11/2007 Mirtorabi et al.
6.493.637 Bl 12/2002 Steeg 2007/0294426 A1 12/2007 Huang et al.
6,563,823 Bl 5/2003 Przygienda et al. 2008/0016249 Al 1/2008 Ellis et al.
6.600.721 B2 7/2003 Edholm 2008/0109569 Al 5/2008 Leonard et al.
6.601.098 Bl 7/2003 Case et al. 2008/0126739 Al 5/2008 Archer et al.
6.633.937 B2 10/2003 Thomson 2008/0148355 Al 6/2008 Archer et al.
6.687.247 Bl 2/2004 Wilford et al. 2008/0168177 A1 7/2008 Subramaniam
6725313 Bl 4/2004 Wingard et al. 2008/0240115 A1 10/2008 Briscoe et al.
6,742,044 Bl 5/2004 Aviani et al. 2008/0306721 Al 12/2008 Yang
6.748.413 Bl 6/2004 Bournas 2008/0310350 Al 12/2008 Dykema et al.
6,772,255 B2 /2004 Daynes 2008/0313376 Al 12/2008 Archer et al.
6,775,703 Bl 8/2004 Burns et al. 2008/0313661 Al 12/2008 Blocksome et al.
6,836,480 B2 12/2004 Basso et al. 2009/0003344 Al 1/2009 Kumar
6.839.768 B2 1/2005 Ma et al. 2009/0006808 Al 1/2009 Blumrich et al.
6.839.820 Bl 1/2005 Daruwalla et al. 2009/0006810 A1 1/2009 Almasi et al.
6894974 Bl 52005 Awova ef al. 2009/0025604 Al 1/2009 Deroover et al.
6901052 B2 52005 Buskirk ct al. 2009/0037707 A1 2/2009 Blocksome
6,952,692 Bl 10/2005 Bhattiprolu et al. 2009/0043988 Al 2/2009 Archer et al.
6,990,529 B2 1/2006 Yang et al. 2009/0067334 Al 3/2009 Archer et al.
7,032,224 B2* 4/2006 Kadakiaetal. 719/313 2009/0089328 Al 4/2009 Miller
7,120,712 B2 10/2006 Wingard et al. 2009/0092075 Al 4/2009 Corson et al.
7.197.577 B2 3/2007 Nellitheertha 2009/0113308 Al 4/2009 Almasi et al.
7916217 B2 5/2007 Hansen ot al. 2009/0125604 Al 5/2009 Chang et al.
7986.471 B2 10/2007 Kloth et al. 2009/0129277 Al 5/2009 Supalov et al.
7900155 B2 11/2007 Ebert et al. 2009/0138892 Al 52009 Almasi et al.
7301.541 B2 112007 Hansen et al. 2009/0196282 Al 8/2009 Fellman et al.
7458077 B2 11/2008 Duke 2009/0201832 A1 82009 Brown
7466.652 B2 12/2008 Lau et al. 2009/0300154 A1 12/2009 Branson et al.
7.478.138 B2 1/2009 Chang et al. 2010/0005189 A1 1/2010 Archer et al.
7.480.298 B2 1/2009 Blackmore et al. 2010/0017492 Al 1/2010 Reistad
7.480,609 Bl 1/2009 Cavanagh etal. 2010/0023631 A1 1/2010 Archer et al.
7.509.244 Bl 3/2009 Shakeri et al. 2010/0037035 Al 2/2010 Archer et al.
7527558 B2 5/2000 Lavoio ef al. 2010/0058313 Al 3/2010 Hansmann et al.
7.539.209 B2 5/2009 Pelley 2010/0241774 A1 9/2010 Olszewski et al.
7,647,441 B2 1/2010 Wingard et al. 2010/0274872 Al 10/2010 Harrang et al.
7.673.011 B2 3/2010 Archer et al. 2010/0287320 Al 11/2010 Querol et al.
7.684332 B2 3/2010 Rayetal. 2011/0113083 Al 52011 Shahar
7,738,443 B2 6/2010 Kumar 2011/0238949 Al 9/2011 Archer et al.
7,743,382 B2 6/2010 Schumacher et al. 2011/0258627 Al 10/2011 Faraj et al.
7,813,369 B2 10/2010 Blackmore et al. 2012/0030370 Al 2/2012 Faraj et al.
7913369 B2 3/2011 Gakovic 2012/0174105 Al 7/2012 Archer et al.
7.953.085 B2 5/2011 Chang et al. 2012/0185230 A1 7/2012 Archer et al.
7.058.183 B2 6/2011 Arimilli et al. 2012/0185867 Al 7/2012 Archer et al.
8.041.960 B2 10/2011 Archer et al. 2012/0185873 Al 7/2012 Archer et al.
8.055.879 B2 11/2011 Archer et al. 2012/0210094 Al 82012 Blocksome et al.
8,087,025 B1 12/2011 Graupner 2012/0246256 Al 9/2012 Blocksome et al.
8,195,152 Bl 6/2012 Edwards 2013/0024866 Al 1/2013 Archer et al.
2001/0047458 Al 11/2001 lizuka 2013/0046844 Al 2/2013 Faraj et al.
2002/0065930 Al 5/2002 Rhodes 2013/0060557 Al 3/2013 Archer et al.
2002/0194392 Al 12/2002 Cheng et al. 2013/0060833 Al 3/2013 Archer et al.
2003/0004699 Al 1/2003 Choi et al. 2013/0061238 Al 3/2013 Archer et al.
2003/0021287 Al 1/2003 Leeetal. 2013/0067479 Al 3/2013 Archer et al.
2003/0074142 Al 4/2003 Steeg 2013/0067483 Al 3/2013 Archer et al.
2003/0093254 Al 5/2003 Frankel et al. 2013/0067487 Al 3/2013 Faraj et al.
2003/0093255 Al 5/2003 Freyensee et al. 2013/0111482 Al 5/2013 Archer et al.

US 9,065,839 B2
Page 3

(56) References Cited

U.S. PATENT DOCUMENTS
2013/0124665 Al
2013/0160025 Al
2013/0179620 Al

OTHER PUBLICATIONS

5/2013 Blocksome et al.
6/2013 Faraj et al.
7/2013 Faraj et al.

“MPI Performance Topics.”.*

“Message Buffering and its Effet on the Communication Perfor-
mance of Parallel computers.”.*

“Derived Datatypes with MPL.”.*

Office Action, U.S. Appl. No. 11/832.192, Oct. 29, 2010.

Bershad et al. Spin—An Extensible Microkernel for Application-
Specific Operating System Services. ACM SIGOPS Operating Sys-
tem Review. vol. 29, Issue 1 (Jan. 1995). pp. 74-77.

Bershad et al. Spin—An Extensible Microkernel for Application-
Specific Operating System Services. Technical Report 94-03-03
(Feb. 28, 1994). pp. 1-16. [Retrieved from: http://www-spin.cs.
washington.edu/papers/index.html on Nov. 23, 2009].
Hollingworth, D.: Redmond, T.; Rice, R. Security Policy Realization
in an Extensible Operating System. Proceedings of DARPA Infor-
mation Survivability Conference and Exposition. DISCEX *00 (Jan.
25-27,2000). vol. 1. pp. 320-334.

“Windows Native Processor Performance Control”, Windows Plat-
form Design Notes—Designing Hardware for the Microsoft Win-
dows Family of Operating Systems, Nov. 12, 2002.

Office Action Dated Dec. 10, 2009 in U.S. Appl. No. 11/553,040.
Office Action Dated Oct. 3, 2008 in U.S. Appl. No. 11/531,846.
Final Office Action Dated Mar. 2,2009 in U.S. Appl. No. 11/531,846.
Office Action Dated Jul. 31, 2009 in U.S. Appl. No. 11/531,846.
Office Action Dated Apr. 29, 2009 in U.S. Appl. No. 11/764,282.
Final Office Action Dated Dec. 8,2009 in U.S. Appl. No. 11/764,282.
Notice of Allowance Dated Oct. 13, 2009 in U.S. Appl. No.
11/837,015.

Chan, Ernie et al. “Collective Communication on Architectures that
Support Simultaneous Communication over Multiple Links”,
PPoPP’06, Mar. 29-31, 2006, New York, New York, USA, pp. 2-11.
Mao, Weizhen et al. “One-To-All Personalized Communication in
Torus Networks”, Proceedings of the 25" IASTED International
Multi-Conference: parallel and distributed computing networks,
Innsbruck, Austria, 2007, pp. 291-296.

Almasi, George et al. “Optimization of MPI Collective Communica-
tion on BlueGene/L Systems”, ICS’0S, Jun. 20-22, 2005, Boston,
MA, USA, 2005, pp. 253-262.

Moreira, et al.; The Blue Gene/L. Supercomputer: A Hardware and
Software Story; International Journal of Parallel Programming; Jun.
2007; pp. 181-206; vol. 35, No. 3, Springer Science+Business Media
LLC.; USA.

Notice of Allowance Dated Apr. 6, 2010 in U.S. Appl. No.
11/531,846.

Final Office Action Dated Apr. 29, 2010 in U.S. Appl. No.
11/553,040.

Office Action Dated Jul. 12, 2010 in U.S. Appl. No. 11/764,282.
Office Action Dated May 3, 2010 in U.S. Appl. No. 12/180,963.
Nenad Stankovic Kang Zhang, Visual Programming for Message-
Passing Systems (1999), International Journal of Software Engineer-
ing and Knowledge Engineering.

Matthew J. Sottile, Vaddadi P. Chandu, David A. Bader, Performance
analysis of parallel programs via message-passing graph traversal,
College of Computing, Georgia Institute of Technology, Feb. 25,
2006.

“MPI-2: Extensions to the Message-Passing Interface,” Forum, Nov.
15, 2003.

Office Action, U.S. Appl. No. 11/946,934, Nov. 24, 2010.

Office Action, U.S. Appl. No. 11/924,934, Aug. 19, 2010.

Notice of Allowance, U.S. Appl. No. 11/764,282, Dec. 10, 2010.
Office Action, U.S. Appl. No. 11/832,192, Oct. 29, 2010.

Office Action, U.S. Appl. No. 12/166,748, May 27, 2010.

Office Action, U.S. Appl. No. 12/166,748, Aug. 25, 2010.

Notice of Allowance, U.S. Appl. No. 12/180,963, Oct. 20, 2010.

Final Office Action, U.S. Appl. No. 12/166,748, Mar. 7, 2011.
Final Office Action, U.S. Appl. No. 11/832,192, Apr. 13, 2011.
Office Action, U.S. Appl. No. 11/764,333, Apr. 13, 2011.

Final Office Action, U.S. Appl. No. 11/924,934, Feb. 24, 2011.
Notice of Allowance, U.S. Appl. No. 11/946,136, Mar. 4, 2011.
Office Action, U.S. Appl. No. 11/865,921, Feb. 2, 2011.

Willis, “MinSim: Optimized, Compiled VHDL Simulation Using
Networked & Parallel Computers”, 1993, Proceedings of Fall 1993
VHDL International User’s Forumn, pp. 197-144.

Final Office Action, U.S. Appl. No. 11/924,934, Jan. 6, 2012.
Advisory Action, U.S. Appl. No. 11/865,981, Oct. 14, 2011.
Advisory Action, U.S. Appl. No. 11/764,333, Nov. 28, 2011.
Notice of Allowance, U.S. Appl. No. 11/832,192, Aug. 11, 2011.
Office Action, U.S. Appl. No. 12/189,336, Dec. 9, 2011.

Notice of Allowance, U.S. Appl. No. 12/189,336, Mar. 27, 2013.
Office Action, U.S. Appl. No. 13/006,696, Mar. 4, 2013.

Final Office Action, U.S. Appl. No. 13/007,905, Apr. 17, 2013.
Final Office Action, U.S. Appl. No. 12/985,075, Apr. 18, 2013.
Final Office Action, U.S. Appl. No. 13/667,456, Apr. 19, 2013.
Huang et al., “DZM: MPI One-Sided Exploitation of LAIP API’s
Component Design, Communication Protocols & Application Tools
Development”, Jun. 6, 2006, pp. 1-70, IBM Corporation,
Poughkeepsie, NY.

Tanenbaum, Andrew S., “Structured Computer Organization”, 1984,
Prentice-Hall, 2" Edition, pp. 10-12.

Final Office Action, U.S. Appl. No. 11/764,333, Sep. 2, 2011.
Office Action, U.S. Appl. No. 12/135,604, Nov. 4, 2011.

Notice of Allowance, U.S. Appl. No. 12/166,748, Nov. 9, 2011.
Blaise Barney, “Message Passing Interface (MPA)”, Jul. 21, 2011,
Lawrence Livermore National Laboratory, <http://web.archive.org/
web/20110721045616/https://computing.llnl.gov/tutorials/mpl/>.
“DeinoMPI—MPI__Comm__split”, May 11, 2011, Deino Software,
<http://web.archive.org/web/20110501135905?http://mpi.deino.
net/mpi__functions/MPI_ Comm__split.html>.

Office Action, U.S. Appl. No. 13/185,856, May 23, 2013, pp. 1-14.
Final Office Action, U.S. Appl. No. 12/748,579, May 10, 2013, pp.
1-7.

Notice of Allowance, U.S. Appl. No. 12/985,075, Jun. 12, 2013, pp.
1-14.

Office Action, U.S. Appl. No. 13/231,326, Jun. 6, 2013, pp. 1-57.
Office Action, U.S. Appl. No. 13/690,474, Jun. 25, 2013.
University of Minnesota Super Computing Institute. 2009. Derived
Data Types with MPIL.

William Saphir, Message Buffering and It’s Effect on the Commu-
nications Performance on Parallel Computers. Apr. 1994.
University of Minnesota Super Computing Institute. 2009 MPI Per-
formance Topics.

Final Office Action, U.S. Appl. No. 11/865,981, Jul. 22, 2011.
Groppl, “Tutorial on MPI: The Message-Passing Interface”,
Argonne National Laboratory, Apr. 23, 2009, URL: https://web.
archive.org/web/2009042304 1649/http://www.mcs.anl.gov/re-
search/projects/mpi/tutorial/gropp/node82.html.

Gropp2, “Tutorial on MPI: The Message-Passing Interface”,
Argonne National Laboratory, Apr. 23 2009, URL: https://web.
archive.org/web/20090423035309/http://www.mcs.anl.gov/re-
search/projects/mpi/tutorial/g ropp/node81 html.

Weed, “Message Passing Programming with MPI-Overview and
Function Description”, Mississippi State University, Jul. 1999, 124
pages.

“MPI-2: Extensions to the Message-Passing Interface,” Message
Passing Interface Forum, Nov. 15, 2003, http://moi-forum.cs.uiuc.
edu/docs/mpi2-report.pdf, Accessed Nov. 7, 2013, 370 pages.
“MPI Performance Topics”, https://computing.llnl.gov/tutorials/
mpi__performance/, Accessed Jul. 8, 2011, 20 Pages.

Saphir, W., “Message Buffering and its Effect on the Communication
Performance of Parallel Computers”, Apr. 1994, http://citeseerx.ist.
psu.edw/'viewdoc/download?doi=1 0.1.1.128.5359&repl
&type=pdf, pp. 1-20.

“Derived Datatypes with MPI”, http://static.msi.umn.edu/tutorial/
scicomp/general/ MPI/content6,html, Accessed Jul. 11, 2011, 10
Pages.

Willis, T, et al., “MinSim: Optimized, Compiled VHDL Simulation
Using Networked & Parallel Computers”, Proceedings of Fall 1993

US 9,065,839 B2
Page 4

(56) References Cited
OTHER PUBLICATIONS

VHDL International User’s Forum, Fall 1993, http://www.eda.org/
VIUF_ proc/Fall93/abstractfall93 htmI#WILLIS93A, Accessed
Nov. 7, 2013, pp. 137-144.

Almasi, G., et al. “Optimization of MPICollective Communication
on BlueGene/L Systems”, ICS’05, Jun. 20-22, 2005, pp. 253-262,
ACM, Boston, MA, USA.

Chan, E., et al. “Collective Communication on Architectures that
Support Simultaneous Communication over Multiple links”,
PPoPP’06, Mar. 29-31, 2006, pp. 2-11, ACM, New York, New York,
USA.

Huang, S., et al., “DZB: MPI One-sided Exploitation of LAPI APIs
Component Design”, Communication Protocols & Application Tools
Development, Mar. 16, 2006, pp. 1-70, IBM Corporation
Poughkeepsie, NY, USA.

Weizhen, M. et al., “One-To-All Personalized Communication in
Torus Networks”, PDCn’07 Proceedings of the 25th IASTED Inter-
national Multi-Conference: parallel and distributed computing and
networks, Innsbruck, Austria,Year: 2007 (Month Unknown), pp.
291-296, Acta Press Anaheim, CA, USA.

Sottile, M., et al., “Performance analysis of parallel programs via
message-passing graph traversal”, Feb. 25, 2006, Proc. 20th IEEE
Inn Parallel and Distributed Processing Symp. (IPDPS), Conference
Date: Apr. 25-29, 2006, pp. 1-29, Los Alamos Nat. Lab., NM, USA.
URL: https://smartech.gatech.edu/bitstream/handle/1853/14424/
GT-CSE-06-10.pdf.

Stankovic, N., et al., “Visual Programming for Message-Passing
Systems”, International Journal of Software Engineering and Knowl-
edge Engineering, (1999), (Month Unknown), 25 Pages, vol. 9, URL:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.4673.
“DeinoMPI—MPI__Comm__split, May 11, 2011, Deino Software,”
http://web.archive.org/web/20110501135905/http://mpi.deino.net/
mpi__functions/MP1_Comm__split.html, Accessed May 30,2013, 4
Pages.

Barney, B., “Message Passing Interface (MPI)”, Jul. 21, 2011,
Lawrence Livermore National Laboratory http://web.archive.org/
web/20110721045616/https://computing.llnl.gov/tutorial/mpi/,
Accessed Nov. 7, 2013, 31 Pages.

Faraj, A., etal., “STAR-MPI: Self Tuned Adaptive Routines for MPI
Collective Operations”, Proceedings of the 20th Annual International
Conference on Supercomputing (ICS’06), Jun. 2006, pp. 199-208,
ACM, New York, New York, USA.

Ribler, R, et al., “The Autopilot performance-directed adaptive con-
trol system,” Future Generations Computer Systems, Sep. 1, 2001,
pp. 175-187, vol. 18, No. 1, Elsevier Science Publications,
Amsterdam, NL.

Zhang, Y., et al., “Automatic Performance Tuning for J2EE Applica-
tion Server Systems,” Lecture Notes in Computer Science, Year:
2005, (Month Unknown), pp. 520-527, vol. 3806, Springer Berlin
Heidelberg.

Chung, I-Hsin, et al., “Automated Cluster-Based Web Service Per-
formance Tuning,” Proceedings of the 13th IEEE International Sym-
posium on High Performance Distributed Computing, 2004, Hono-
lulu, HI, USA, Jun. 4-6, 2004, pp. 36-44, Piscataway, NJ, USA.
Hondroudakis, A., et al., “An Empirically Derived Framework for
Classifying Parallel Program Performance Tuning Problems,” Pro-
ceedings of the Sigmetrics Symposium on Parallel and Distributed
Tools, SPOT 1998, Welches, OR, Aug. 3-4, 1998. Sigmetrics Sym-
posium on Parallel and Distributed Tools, Aug. 3, 1998, pp. 112-123,
vol. Symp 2, New York, NY, US, ACM.

Gara, A, et al., “Overview of the Blue Gene/L System Architecture,”
IBM Journal of Research & Development, Mar./May 2005, pp. 195-
211, vol. 49, No. 2/3, IBM, New York, USA.

Adiga, N. R,, et al., “Blue Gene/L Torus Interconnection Network.”
IBM Journal of Research & Development, Mar./May 2005, pp. 265-
276, vol. 49, No. 2/3, IBM, New York, USA.

Barnett, M. et al., “Broadcasting on Meshes With Worm-Hole Rout-
ing,” Second Revised Version, Dec. 1995, pp. 1-22, University of
Texas, Department of Computer Sciences.

Faraj, A., et al. “MPI Collective Communications on the Blue Gene/P
Supercomputer: Algorithms and Optimizations”, 17th IEEE Sympo-
sium on High Performance Interconnects,New York, NY, Aug. 25-27,
2009, pp. 63-72, IEEE.

Faraj, A., et al. “A Study of Process Arrival Patterns for MPI Collec-
tive Operations”, International Journal of Parallel Programming, Jan.
10, 2008, pp. 1-28, Springer (Online).

Faraj, A., et al. “Automatic Generation and Tuning of MPI Collective
Communication Routines”, ICS’05, Jun. 20-22, 2005, pp. 393-402,
Boston, MA, USA. ACM.

U.S. Appl. No. 8/087,025, filed Dec. 2011, Graupner, Sven.

Office Action, U.S. Appl. No. 12/189,336, Sep. 13, 2012.

Office Action, U.S. Appl. No. 12/748,579, Sep. 19, 2012.

Notice of Allowance, U.S. Appl. No. 12/847,573, Jan. 11, 2012.
Office Action, U.S. Appl. No. 13/007,905, Dec. 28, 2012.

Office Action, U.S. Appl. No. 12/985,075, Nov. 7, 2012.

Office Action, U.S. Appl. No. 13/667,456, Jan. 2, 2013.
Wattenhofer, “Principles of Distributed Computing”, Apr. 2005, 5
pages, Distributed Computing Group, Zurich.

Wikipedia, “Graphical user interface”, Mar. 2007, 5 pages,
Wikipedia.org (online publication), URL: http://en.wikipedia.org/
wiki/Graphical _user__interface.

Vadhiyar et al., “Performance Modeling for Self Adapting Collective
Communications for MPI”, Los Alamos Computer Science Institute
(LACSI) Symposium, Oct. 2001, 15 pages, LACSI, Rice University,
Houston TX.

Final Office Action, U.S. Appl. No. 11/924,934, May 22, 2014, pp.
1-20.

Notice of Allowance, U.S. Appl. No. 13/663,545, Jul. 16, 2014, pp.
1-22.

* cited by examiner

U.S. Patent Jun. 23,2015 Sheet 1 of 9 US 9,065,839 B2

Operational

Group

132
Service
/ Application
/0 Node Service Node Parallel
114 116

Computer

m)

Service

Application
P Interface
LAN 130 126
User
. 128
Printer Terminal
Data Storage 120 122

118

FIG. 1

US 9,065,839 B2

U.S. Patent Jun. 23, 2015 Sheet 2 of 9
Compute Node 152 RAM 156
Processing Cores [
164 Application 158
ALU
166 .
Messaging Module 160
Memory Bus 154
Operating System 162
DMA Controller 195
Bus Adapter DMA Engine 197
194
Extension Bus 168 t
IR 169
Y
Point To Point ALU 170
Adapter +
Ethernet JTAG 180 Global Combining
Adapter Slave AA A ? Network Adapter
172 176 188
+X -Y
181 ¢ 184
Gigabit JTAG 1')2 1" g ¢ Children Parent
Ethernet Master _+¥ 7 190 192
174 178 U
. 183 1_6/ v
v i
Point To Point P
Network
Network 106

108

U.S. Patent Jun. 23,2015 Sheet 3 of 9 US 9,065,839 B2

—
-+

oo

on N

> |

-Y i Compute Node 152

\
Point To Point |@——— +X
1

Adapter
180

A

/

| -
N

=
L
@
w
x>

Parent
192

Compute Node 152

Yy
Global Combining

Network Adapter
188

A A

\J \/
FIG. 3B
Children
190

U.S. Patent Jun. 23,2015 Sheet 4 of 9 US 9,065,839 B2

+/ +
185 183
A

Dots Represent
Compute Nodes
=Y m
184
Y
-Z
186
A Parallel Operations Network, Organized Fl G 4

As A Torus’ Or ‘Mesh’
108

U.S. Patent Jun. 23,2015 Sheet 5 of 9 US 9,065,839 B2

Physical Root
o A
0 L]

Links
103

Nodes
204

’
i \
. iy
4 .
Y, ,s
5N Y
R Y
LA ey
g .

5 Q 6. >_ Branch

Leaf
Nodes

© 06 04 60 06 99 90 06 o ()

A Collective Operations Organized As A Dots Represent
Binary Tree Compute Nodes

106 102

FIG. 5

U.S. Patent Jun. 23,2015 Sheet 6 of 9 US 9,065,839 B2

Origin Node 600 Target Node 604
Application 158 Application Application 606
I's Origin Application Storage 608 | Layer 602 Target Application

<—> §— Storage 614

Data 616
Messaging Module 160 Messaging Module 612

Storage ID 620

Complex Complex . Complex
Origin DT 622 Target DT 624 Messaging Target DT 624
Origi Target Layer gl Target
rigin arge arge
Metadata 642 Metadata 644 <:> Metadata 644
Temporary
‘/ Buffer 646
— —
Subset Of Data 648
Origin DMA Engine 197
— Injection FIFO Reception FIFO — Target DMA Engine 640 -
Buffer 628 Buffer 626
618 | 619 |
618 619
[618] [619] Hardware
Layer 634
Transmission Reception <:> Communications Hardware 638
Stack 630 Stack 632
“ ‘,_J
| | L |

Communications Hardware 636

L.

Point To Point Data
Communications Network
108

FIG. 6

U.S. Patent Jun. 23,2015 Sheet 7 of 9 US 9,065,839 B2

QOrigin Node 600

Application 158 01 2 3 45 586 7

QOrigin Application
" Storage 608

Data 61

Qrigin Messaging Module 160

Storage Receive A Storage ID, A
¢—{ Complex Origin DT, And A
ID 620 Complex Target DT 700 *
Complex Origin DT 622
Create Origin Metadata <J_
Describing The Complex —
v Origin DT 702 ——{ [Origin Metadata 642
Select,oln Dependence Upon <
The Origin Metadata And
Storage ID, A Subset Of The , Subset OIData 548 .
Data 704

Transmit The Selected Subset Of The Data To A Target
Messaging Module On The Target Node 706

Temporary
Contiguously Store The Selected Subset Of The Data (Buffer 646
In A Temporary Buffer On The Origin Node 708 | —

Transmit, From The Temporary Buffer On The Origin %_,
In A Single Data Transfer Operation, The Subset Of
The Data Along With The Origin Metadata Describing [T Subset Of Data 648
The Complex Origin Data Type 710

Target Messaging Module 612

QOrigin
Store Subset Of Data In Target Application
—_— Metadata 642 Storage In Dependence Upon The Complex Target
Subset Of Data 648 L » Data Type 712

2 3 4567

Target Application 0
Storage 614 paa——

Application 606

Target Node 604
FIG. 7

U.S. Patent Jun. 23,2015 Sheet 8 of 9 US 9,065,839 B2

QOrigin Node 600

Application 158 0 1 23 4567 Origin Application
Storage 608

Y

Data 616

Receive A Storage ID, A Origin Messaging Module 160

Complex Origin DT, And A Storage ID 620
’ Complex Target DT 700 I

Comp|ex Complex Orlgln DT 622
Target DT 624 Create Origin]
17 Metadata 702
Create Target _I—> Origin Metadata 642
Metadata 800 *V
1] Subset Of Data 648 Select, In Dependence Upon
Target e A ~ SThe Origin MsetadataOAnd
torage ID, A Subset Of The
Metad;ta 644 Data 704
Transmit The Selected Subset Of The Data To A Target
Messaging Module On The Target Node 706 Temporary
Contiguously Store The Selected Subset Of The Data Buffer 646
In A Temporary Buffer On The Origin Node 708 | > —
Transmit, From The Temporary Buffer On The Origin
Node In Multiple Data Transfer Operations, The | —_
Selected Subset Of The Data According To The Subset Of Data 648
Target Metadata 802

Target Messaging Module 612

Store Subset Of Data In Target Application Storage In
Dependence Upon The Complex Target Data Type 712

J

Subset Of Data 648

Target Application 0012 3 45 6 7
Storage 614 —~_, |

Application 606
Target Node 604

FIG. 8

U.S. Patent Jun. 23,2015 Sheet 9 of 9 US 9,065,839 B2

Origin Node 600
Application 158 1 2 3 45 6 7 8

Origin Application
Storage 608

Y

Data 616

Receive A Storage ID. A Origin Messaging Module 160

Complex Origin DT, And A Storage ID 620
| Complex Target DT 700 $

Complex Complex Qrigin DT 622
Target DT 624 Create Origin 4—,_
v Metadata 702 —
Create Target Orlgln Metadata 642
Metadata 800 ; l'
1] Subset Of Data 648 Select, In Dependence Upon
Target ’ - O SThe Origin I\/IsetadataoAnd
f torage ID, A Subset Of The
"I\./Ietadata 644 Data 704
TransmiIThe Selected Subset Of The Data To A :I:arget _____
Messaging Module On The Target Node 706 1 1
Transmitting, From The Application Storage In 1 2 1
Multiple Data Transfer Operations, The Selected 1 E> 1
Subset Of The Data According To Both The Origin 2 1 "
Metadata And The Target Metadata 900 | [
902 904 906

Target Messaging Module 612

v Store Subset Of Data In Target Application Storage In
Subset Of Data 648 Dependence Upon The Complex Target Data Type 712
Target Application 1 2 3 45 6 7 8
Storage 614 ~__,,|

Application 606

Target Node 604

FIG. 9

US 9,065,839 B2

1
MINIMALLY BUFFERED DATA TRANSFERS
BETWEEN NODES IN A DATA
COMMUNICATIONS NETWORK

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with Government support under
Contract No. B554331 awarded by the Department of Energy.
The Government has certain rights in this invention.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The field of the invention is data processing, or, more
specifically, methods, apparatus, and products for minimally
buffered data transfers between nodes in a data communica-
tions network.

2. Description of Related Art

The development of the EDVAC computer system of 1948
is often cited as the beginning of the computer era. Since that
time, computer systems have evolved into extremely compli-
cated devices. Today’s computers are much more sophisti-
cated than early systems such as the EDVAC. Computer sys-
tems typically include a combination of hardware and
software components, application programs, operating sys-
tems, processors, buses, memory, input/output devices, and
so on. As advances in semiconductor processing and com-
puter architecture push the performance of the computer
higher and higher, more sophisticated computer software has
evolved to take advantage of the higher performance of the
hardware, resulting in computer systems today that are much
more powerful than just a few years ago.

Parallel computing is an area of computer technology that
has experienced advances. Parallel computing is the simulta-
neous execution of the same task (split up and specially
adapted) on multiple processors in order to obtain results
faster. Parallel computing is based on the fact that the process
of'solving a problem usually can be divided into smaller tasks,
which may be carried out simultaneously with some coordi-
nation.

Parallel computers execute parallel algorithms. A parallel
algorithm can be split up to be executed a piece at a time on
many different processing devices, and then put back together
again at the end to get a data processing result. Some algo-
rithms are easy to divide up into pieces. Splitting up the job of
checking all of the numbers from one to a hundred thousand
to see which are primes could be done, for example, by
assigning a subset of the numbers to each available processor,
and then putting the list of positive results back together. In
this specification, the multiple processing devices that
execute the individual pieces of a parallel program are
referred to as ‘compute nodes.” A parallel computer is com-
posed of compute nodes and other processing nodes as well,
including, for example, input/output (‘I/O’) nodes, and ser-
vice nodes.

Parallel algorithms are valuable because it is faster to per-
form some kinds of large computing tasks via a parallel
algorithm than it is via a serial (non-parallel) algorithm,
because of the way modern processors work. It is far more
difficult to construct a computer with a single fast processor
than one with many slow processors with the same through-
put. There are also certain theoretical limits to the potential
speed of serial processors. On the other hand, every parallel
algorithm has a serial part and so parallel algorithms have a

10

15

20

40

45

55

2

saturation point. After that point adding more processors does
not yield any more throughput but only increases the over-
head and cost.

Parallel algorithms are designed also to optimize one more
resource the data communications requirements among the
nodes of a parallel computer. There are two ways parallel
processors communicate, shared memory or message pass-
ing. Shared memory processing needs additional locking for
the data and imposes the overhead of additional processor and
bus cycles and also serializes some portion of the algorithm.

Message passing processing uses high-speed data commu-
nications networks and message buffers, but this communi-
cation adds transfer overhead on the data communications
networks as well as additional memory need for message
buffers and latency in the data communications among nodes.
Designs of parallel computers use specially designed data
communications links so that the communication overhead
will be small but it is the parallel algorithm that decides the
volume of the traffic.

Many data communications network architectures are used
for message passing among nodes in parallel computers.
Compute nodes may be organized in a network as a ‘torus’ or
‘mesh,” for example. Also, compute nodes may be organized
in a network as a tree. A torus network connects the nodes in
a three-dimensional mesh with wrap around links. Every
node is connected to its six neighbors through this torus
network, and each node is addressed by its x, y, z coordinate
in the mesh. In such a manner, a torus network lends itself to
point to point operations. In a tree network, the nodes typi-
cally are connected into a binary tree: each node has a parent,
and two children (although some nodes may only have zero
children or one child, depending on the hardware configura-
tion). Although a tree network typically is inefficient in point
to point communication, a tree network does provide high
bandwidth and low latency for certain collective operations,
message passing operations where all compute nodes partici-
pate simultaneously, such as, for example, an all gather opera-
tion. In computers that use a torus and a tree network, the two
networks typically are implemented independently of one
another, with separate routing circuits, separate physical
links, and separate message buffers.

In systems that utilize such high-speed data communica-
tions networks to effect message passing operations, proces-
sor speed of the individual compute nodes is not significantly
faster than the network transmission speed. The overhead
required to copy data to and from temporary buffers before
and after each transmission therefore significantly affects the
overall time required to pass a message from an origin node to
atarget node. Often the data being passed from an application
on the origin node to an application on the target node is
interpreted using different complex data types by the origin
node application and the target node application. In such
cases, a temporary buffer on the target node is typically used
to store the data while the target node reconstitutes the data in
application storage according to the complex data type that is
used by the target node application. As mentioned above,
however, additional buffering of the data decreases the overall
transmission speed between the origin node application and
the target node application. Readers will therefore recognize
that the need exists for minimally buffered data transfers
between nodes in a data communications network.

SUMMARY OF THE INVENTION

Methods, apparatus, and products for minimally buffered
data transfers between nodes in a data communications net-
work are disclosed that include: receiving, by an origin mes-

US 9,065,839 B2

3

saging module on an origin node from an application on the
origin node, a storage identifier, a complex origin data type,
and a complex target data type, the storage identifier specify-
ing origin application storage containing data on the origin
node, the complex origin data type describing a subset of the
data contained in the origin application storage, the complex
target data type describing an arrangement of the subset of the
data intarget application storage on a target node; creating, by
the origin messaging module, origin metadata describing the
complex origin data type; selecting, by the origin messaging
module from the origin application storage in dependence
upon the origin metadata and the storage identifier, the subset
of the data for transmission to the target node; and transmit-
ting, by the origin messaging module to a target messaging
module on the target node, the selected subset of the data for
storing in the target application storage in dependence upon
the complex target data type without buffering the subset of
the data in a temporary buffer on the target node.

The foregoing and other objects, features and advantages
of the invention will be apparent from the following more
particular descriptions of exemplary embodiments of the
invention as illustrated in the accompanying drawings
wherein like reference numbers generally represent like parts
of exemplary embodiments of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an exemplary system for minimally buft-
ered data transfers between nodes in a data communications
network according to embodiments of the present invention.

FIG. 2 sets forth a block diagram of an exemplary compute
node useful in a parallel computer capable of minimally buff-
ered data transfers between nodes in a data communications
network according to embodiments of the present invention.

FIG. 3A illustrates an exemplary Point To Point Adapter
useful in systems capable of minimally buffered data trans-
fers between nodes in a data communications network
according to embodiments of the present invention.

FIG. 3B illustrates an exemplary Global Combining Net-
work Adapter useful in systems capable of minimally buff-
ered data transfers between nodes in a data communications
network according to embodiments of the present invention.

FIG. 4 sets forth a line drawing illustrating an exemplary
data communications network optimized for point to point
operations useful in systems capable of minimally buffered
data transfers between nodes in a data communications net-
work in accordance with embodiments of the present inven-
tion.

FIG. 5 sets forth a line drawing illustrating an exemplary
data communications network optimized for collective
operations useful in systems capable of minimally buffered
data transfers between nodes in a data communications net-
work in accordance with embodiments of the present inven-
tion.

FIG. 6 sets forth a block diagram illustrating an exemplary
communications architecture illustrated as a protocol stack
useful in minimally buffered data transfers between nodes in
adata communications network according to embodiments of
the present invention.

FIG. 7 sets forth a flow chart illustrating an exemplary
method for minimally buffered data transfers between nodes
in a data communications network according to embodiments
of the present invention.

FIG. 8 sets forth a flow chart illustrating a further exem-
plary method for minimally buffered data transfers between
nodes in a data communications network according to
embodiments of the present invention.

20

25

30

40

45

55

4

FIG. 9 sets forth a flow chart illustrating a further exem-
plary method for minimally buffered data transfers between
nodes in a data communications network according to
embodiments of the present invention.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

Exemplary methods, apparatus, and computer program
products for minimally buffered data transfers between nodes
in a data communications network according to embodiments
of the present invention are described with reference to the
accompanying drawings, beginning with FIG. 1. FIG. 1 illus-
trates an exemplary system for minimally buffered data trans-
fers between nodes in a data communications network
according to embodiments of the present invention. The sys-
tem of FIG. 1 includes a parallel computer (100), non-volatile
memory for the computer in the form of data storage device
(118), an output device for the computer in the form of printer
(120), and an input/output device for the computer in the form
of computer terminal (122). Parallel computer (100) in the
example of FIG. 1 includes a plurality of compute nodes
(102).

The compute nodes (102) are coupled for data communi-
cations by several independent data communications net-
works including a Joint Test Action Group (‘JTAG”) network
(104), a global combining network (106) which is optimized
for collective operations, and a torus network (108) which is
optimized point to point operations. The global combining
network (106) is a data communications network that
includes data communications links connected to the com-
pute nodes so as to organize the compute nodes as a tree. Each
data communications network is implemented with data com-
munications links among the compute nodes (102). The data
communications links provide data communications for par-
allel operations among the compute nodes of the parallel
computer. The links between compute nodes are bi-direc-
tional links that are typically implemented using two separate
directional data communications paths.

In addition, the compute nodes (102) of parallel computer
are organized into at least one operational group (132) of
compute nodes for collective parallel operations on parallel
computer (100). An operational group of compute nodes is
the set of compute nodes upon which a collective parallel
operation executes. Collective operations are implemented
with data communications among the compute nodes of an
operational group. Collective operations are those functions
that involve all the compute nodes of an operational group. A
collective operation is an operation, a message-passing com-
puter program instruction that is executed simultaneously,
that is, at approximately the same time, by all the compute
nodes in an operational group of compute nodes. Such an
operational group may include all the compute nodes in a
parallel computer (100) or a subset all the compute nodes.
Collective operations are often built around point to point
operations. A collective operation requires that all processes
on all compute nodes within an operational group call the
same collective operation with matching arguments. A
‘broadcast’ is an example of a collective operation for moving
data among compute nodes of an operational group. A
‘reduce’ operation is an example of a collective operation that
executes arithmetic or logical functions on data distributed
among the compute nodes of an operational group. An opera-
tional group may be implemented as, for example, an MPI
‘communicator.

‘MPI refers to ‘Message Passing Interface,” a prior art
parallel communications library, a module of computer pro-

US 9,065,839 B2

5

gram instructions for data communications on parallel com-
puters. Examples of prior-art parallel communications librar-
ies that may be improved for use with systems according to
embodiments of the present invention include MPI and the
‘Parallel Virtual Machine’ (‘PVM”) library. PVM was devel-
oped by the University of Tennessee, The Oak Ridge National
Laboratory, and Emory University. MPI is promulgated by
the MPI Forum, an open group with representatives from
many organizations that define and maintain the MPI stan-
dard. MPI at the time of this writing is a de facto standard for
communication among compute nodes running a parallel pro-
gram on a distributed memory parallel computer. This speci-
fication sometimes uses MPI terminology for ease of expla-
nation, although the use of MPI as such is not a requirement
or limitation of the present invention.

Some collective operations have a single originating or
receiving process running on a particular compute node in an
operational group. For example, in a ‘broadcast’ collective
operation, the process on the compute node that distributes
the data to all the other compute nodes is an originating
process. In a ‘gather’ operation, for example, the process on
the compute node that received all the data from the other
compute nodes is a receiving process. The compute node on
which such an originating or receiving process runs is
referred to as a logical root.

Most collective operations are variations or combinations
of four basic operations: broadcast, gather, scatter, and
reduce. The interfaces for these collective operations are
defined in the MPI standards promulgated by the MPI Forum.
Algorithms for executing collective operations, however, are
not defined in the MPI standards. In a broadcast operation, all
processes specify the same root process, whose buffer con-
tents will be sent. Processes other than the root specify receive
buffers. After the operation, all buffers contain the message
from the root process.

In a scatter operation, the logical root divides data on the
root into segments and distributes a different segment to each
compute node in the operational group. In scatter operation,
all processes typically specify the same receive count. The
send arguments are only significant to the root process, whose
buffer actually contains sendcount*N elements of a given
data type, where N is the number of processes in the given
group of compute nodes. The send buffer is divided and
dispersed to all processes (including the process on the logi-
cal root). Each compute node is assigned a sequential identi-
fier termed a ‘rank.” After the operation, the root has sent
sendcount data elements to each process in increasing rank
order. Rank 0 receives the first sendcount data elements from
the send buffer. Rank 1 receives the second sendcount data
elements from the send buffer, and so on.

A gather operation is a many-to-one collective operation
that is a complete reverse of the description of the scatter
operation. That is, a gather is a many-to-one collective opera-
tion in which elements of a datatype are gathered from the
ranked compute nodes into a receive butfer in a root node.

A reduce operation is also a many-to-one collective opera-
tion that includes an arithmetic or logical function performed
on two data elements. All processes specify the same ‘count’
and the same arithmetic or logical function. After the reduc-
tion, all processes have sent count data elements from com-
puter node send buffers to the root process. In a reduction
operation, data elements from corresponding send buffer
locations are combined pair-wise by arithmetic or logical
operations to yield a single corresponding element in the root
process’s receive buffer. Application specific reduction
operations can be defined at runtime. Parallel communica-

10

15

20

25

30

35

40

45

50

55

6

tions libraries may support predefined operations. MPI, for
example, provides the following predefined reduction opera-
tions:

MPI_MAX maximum
MPI_MIN minimum
MPL_SUM sum

MPI_PROD product
MPI_LAND logical and
MPI_BAND bitwise and
MPI_LOR logical or
MPI_BOR bitwise or
MPI_LXOR logical exclusive or
MPI_BXOR bitwise exclusive or

In addition to compute nodes, the parallel computer (100)
includes input/output (‘1/0’) nodes (110, 114) coupled to
compute nodes (102) through the global combining network
(106). The compute nodes in the parallel computer (100) are
partitioned into processing sets such that each compute node
in a processing set is connected for data communications to
the same [/O node. Each processing set, therefore, is com-
posed of one I/O node and a subset of compute nodes (102).
The ratio between the number of compute nodes to the num-
ber of /O nodes in the entire system typically depends on the
hardware configuration for the parallel computer. For
example, in some configurations, each processing set may be
composed of eight compute nodes and one /O node. In some
other configurations, each processing set may be composed of
sixty-four compute nodes and one I/O node. Such example
are for explanation only, however, and not for limitation. Each
1/0 nodes provide I/O services between compute nodes (102)
of’its processing set and a set of /O devices. In the example of
FIG. 1, the I/O nodes (110, 114) are connected for data
communications [/O devices (118, 120, 122) through local
area network (‘LAN’) (130) implemented using high-speed
Ethernet.

The parallel computer (100) of FIG. 1 also includes a
service node (116) coupled to the compute nodes through one
of the networks (104). Service node (116) provides services
common to pluralities of compute nodes, administering the
configuration of compute nodes, loading programs into the
compute nodes, starting program execution on the compute
nodes, retrieving results of program operations on the com-
puter nodes, and so on. Service node (116) runs a service
application (124) and communicates with users (128) through
a service application interface (126) that runs on computer
terminal (122).

As described in more detail below in this specification, the
system of FIG. 1 operates generally for minimally buffered
data transfers between nodes in a data communications net-
work according to embodiments of the present invention. The
system of FIG. 1 operates generally for minimally buffered
data transfers between nodes in a data communications net-
work according to embodiments of the present invention as
follows: receiving, by a origin messaging module on an origin
node from an application on the origin node, a storage iden-
tifier, a complex origin data type, and a complex target data
type, the storage identifier specifying origin application stor-
age containing data on the origin node, the complex origin
data type describing a subset of the data contained in the
application storage, the complex target data type describing
an arrangement of the subset of the data in target application
storage on a target node; creating, by the origin messaging
module, origin metadata describing the complex origin data
type; selecting, by the origin messaging module from the
application storage in dependence upon the origin metadata

US 9,065,839 B2

7

and the storage identifier, the subset of the data for transmis-
sion to the target node; transmitting, by the origin messaging
module to a target messaging module on the target node, the
selected subset of the data for storing in the target application
storage in dependence upon the complex target data type
without buffering the subset of the data in a temporary buffer
on the target node. Readers will note that the origin node is a
node that initiates a data transfer with another node. The
target node is a node that participates in the data transfer
initiated by the origin node.

The arrangement of nodes, networks, and I/O devices mak-
ing up the exemplary system illustrated in FIG. 1 are for
explanation only, not for limitation of the present invention.
Data processing systems capable of minimally buffered data
transfers between nodes in a data communications network
according to embodiments of the present invention may
include additional nodes, networks, devices, and architec-
tures, not shown in FIG. 1, as will occur to those of skill in the
art. Although the parallel computer (100) in the example of
FIG. 1 includes sixteen compute nodes (102), readers will
note that parallel computers capable of minimally buffered
data transfers between nodes in a data communications net-
work according to embodiments of the present invention may
include any number of compute nodes. In addition to Ethernet
and JTAG, networks in such data processing systems may
support many data communications protocols including for
example TCP (Transmission Control Protocol), IP (Internet
Protocol), and others as will occur to those of skill in the art.
Various embodiments of the present invention may be imple-
mented on a variety of hardware platforms in addition to those
illustrated in FIG. 1.

Readers will note that the description above of minimally
buffered data transfers between nodes in a data communica-
tions network according to embodiments of the present inven-
tion using a parallel computer is for explanation and not for
limitation. In fact, minimally buffered data transfers between
nodes in a data communications network according to
embodiments of the present invention may be carried out in
any system of nodes connected for data communications
through a data communications network as will occur to those
of'skill in the art. Such systems may include distributed com-
puting systems, cluster computing systems, grid computing
systems, and so on.

Minimally buffered data transfers between nodes in a data
communications network according to embodiments of the
present invention may be generally implemented on a parallel
computer that includes a plurality of compute nodes. In fact,
such computers may include thousands of such compute
nodes. Each compute node is in turn itself a kind of computer
composed of one or more computer processors (or processing
cores), its own computer memory, and its own input/output
adapters. For further explanation, therefore, FIG. 2 sets forth
a block diagram of an exemplary compute node useful in a
parallel computer capable of minimally buffered data trans-
fers between nodes in a data communications network
according to embodiments ofthe present invention. The com-
pute node (152) of FIG. 2 includes one or more processing
cores (164) as well as random access memory (‘RAM”) (156).
The processing cores (164) are connected to RAM (156)
through a high-speed memory bus (154) and through a bus
adapter (194) and an extension bus (168) to other components
of'the compute node (152). Stored in RAM (156) is an appli-
cation program (158), a module of computer program instruc-
tions that carries out parallel, user-level data processing using
parallel algorithms.

Also stored in RAM (156) is a messaging module (160), a
library of computer program instructions that carry out par-

10

15

20

25

30

35

40

45

50

55

60

65

8

allel communications among compute nodes, including point
to point operations as well as collective operations. Applica-
tion program (158) executes collective operations by calling
software routines in the messaging module (160). A library of
parallel communications routines may be developed from
scratch for use in systems according to embodiments of the
present invention, using a traditional programming language
such as the C programming language, and using traditional
programming methods to write parallel communications rou-
tines that send and receive data among nodes on two inde-
pendent data communications networks. Alternatively, exist-
ing prior art libraries may be improved to operate according to
embodiments of the present invention. Examples of prior-art
parallel communications libraries include the ‘Message Pass-
ing Interface’ (‘MPI’) library and the ‘Parallel Virtual
Machine’ (‘PVM’) library.

The messaging module (160) of FIG. 2 includes a set of
computer program instructions for minimally buffered data
transfers between nodes in a data communications network
according to embodiments of the present invention. The mes-
saging module (160) of FIG. 2 operates generally for mini-
mally buffered data transfers between nodes in a data com-
munications network according to embodiments of the
present invention by: receiving, from the application (158), a
storage identifier, a complex origin data type, and a complex
target data type, the storage identifier specifying origin appli-
cation storage containing data on the origin node (152), the
complex origin data type describing a subset of the data
contained in the application storage, the complex target data
type describing an arrangement of the subset of the data in
target application storage on a target node; creating origin
metadata describing the complex origin data type; selecting,
from the application storage in dependence upon the origin
metadata and the storage identifier, the subset of the data for
transmission to the target node; and transmitting, to a target
messaging module on the target node, the selected subset of
the data for storing in the target application storage in depen-
dence upon the complex target data type without buffering the
subset of the data in a temporary buffer on the target node.

In some embodiments the complex target data type
received from the application (158) is the same as the com-
plex origin data type. In such embodiments, the messaging
module (160) of FIG. 2 may transmit, to a target messaging
module on the target node, the selected subset of the data for
storing in the target application storage in dependence upon
the complex target data type without buffering the subset of
the data in a temporary buffer on the target node by: contigu-
ously storing the selected subset of the data in a temporary
buffer on the origin node (152); and transmitting, from the
temporary buffer on the origin node (152) in a single data
transfer operation, the subset of the data along with the origin
metadata describing the complex origin data type.

In some embodiments the message module (160) of FIG. 2
may also operate generally for minimally buffered data trans-
fers between nodes in a data communications network
according to embodiments of the present invention by: creat-
ing target metadata describing the complex target data type.
In such embodiments, the messaging module (160) of FIG. 2
may transmit, to a target messaging module on the target
node, the selected subset of the data for storing in the target
application storage in dependence upon the complex target
data type without buffering the subset of the data in a tempo-
rary buffer on the target node by: contiguously storing the
selected subset of the data in a temporary buffer on the origin
node (152), and transmitting, from the temporary buffer on
the origin node (152) in multiple data transfer operations, the
selected subset of the data according to the target metadata. In

US 9,065,839 B2

9

other embodiments where the messaging module (160) of
FIG. 2 creates target metadata describing the complex target
data type, the messaging module (160) may transmit, to a
target messaging module on the target node, the selected
subset of the data for storing in the target application storage
in dependence upon the complex target data type without
buffering the subset of the data in a temporary buffer on the
target node by: transmitting, from the application storage in
multiple data transfer operations, the selected subset of the
data according to both the origin metadata and the target
metadata.

Also stored in RAM (156) is an operating system (162), a
module of computer program instructions and routines for an
application program’s access to other resources of the com-
pute node. It is typical for an application program and parallel
communications library in a compute node of a parallel com-
puter to run a single thread of execution with no user login and
no security issues because the thread is entitled to complete
access to all resources of the node. The quantity and com-
plexity of tasks to be performed by an operating system on a
compute node in a parallel computer therefore are smaller and
less complex than those of an operating system on a serial
computer with many threads running simultaneously. In addi-
tion, there is no video I/O on the compute node (152) of FIG.
2, another factor that decreases the demands on the operating
system. The operating system may therefore be quite light-
weight by comparison with operating systems of general
purpose computers, a pared down version as it were, or an
operating system developed specifically for operations on a
particular parallel computer. Operating systems that may use-
fully be improved, simplified, for use in a compute node
include UNIX™, Linux™, Microsoft XP™, AJXTMIM
IBM’s i5/0S™, and others as will occur to those of skill in the
art.

The exemplary compute node (152) of FIG. 2 includes
several communications adapters (172, 176, 180, 188) for
implementing data communications with other nodes of a
parallel computer. Such data communications may be carried
out serially through RS-232 connections, through external
buses such as Universal Serial Bus (‘USB’), through data
communications networks such as IP networks, and in other
ways as will occur to those of skill in the art. Communications
adapters implement the hardware level of data communica-
tions through which one computer sends data communica-
tions to another computer, directly or through a network.
Examples of communications adapters useful in systems for
minimally buffered data transfers between nodes in a data
communications network according to embodiments of the
present invention include modems for wired communica-
tions, Ethernet (IEEE 802.3) adapters for wired network com-
munications, and 802.11b adapters for wireless network com-
munications.

The data communications adapters in the example of FIG.
2 include a Gigabit Ethernet adapter (172) that couples
example compute node (152) for data communications to a
Gigabit Ethernet (174). Gigabit Ethernet is a network trans-
mission standard, defined in the IEEE 802.3 standard, that
provides a data rate of 1 billion bits per second (one gigabit).
Gigabit Ethernet is a variant of Ethernet that operates over
multimode fiber optic cable, single mode fiber optic cable, or
unshielded twisted pair.

The data communications adapters in the example of FIG.
2 includes a JTAG Slave circuit (176) that couples example
compute node (152) for data communications to a JTAG
Master circuit (178). JTAG is the usual name used for the
IEEE 1149.1 standard entitled Standard Test Access Port and
Boundary-Scan Architecture for test access ports used for

20

40

45

50

55

10

testing printed circuit boards using boundary scan. JTAG is so
widely adapted that, at this time, boundary scan is more or
less synonymous with JTAG. JTAG is used not only for
printed circuit boards, but also for conducting boundary scans
of integrated circuits, and is also useful as a mechanism for
debugging embedded systems, providing a convenient “back
door” into the system. The example compute node of FIG. 2
may be all three of these: It typically includes one or more
integrated circuits installed on a printed circuit board and may
be implemented as an embedded system having its own pro-
cessor, its own memory, and its own /O capability. JTAG
boundary scans through JTAG Slave (176) may efficiently
configure processor registers and memory in compute node
(152) for use in minimally buffered data transfers between
nodes in a data communications network according to
embodiments of the present invention.

The data communications adapters in the example of FIG.
2 includes a Point To Point Adapter (180) that couples
example compute node (152) for data communications to a
network (108) that is optimal for point to point message
passing operations such as, for example, a network config-
ured as a three-dimensional torus or mesh. Point To Point
Adapter (180) provides data communications in six direc-
tions on three communications axes, X, y, and z, through six
bidirectional links: +x (181), —x (182), +y (183), -y (184), +z
(185), and -z (186).

The data communications adapters in the example of FIG.
2 includes a Global Combining Network Adapter (188) that
couples example compute node (152) for data communica-
tions to a network (106) that is optimal for collective message
passing operations on a global combining network config-
ured, for example, as a binary tree. The Global Combining
Network Adapter (188) provides data communications
through three bidirectional links: two to children nodes (190)
and one to a parent node (192).

Example compute node (152) includes two arithmetic
logic units (‘ALUs’). ALU (166) is a component of each
processing core (164), and a separate ALU (170) is dedicated
to the exclusive use of Global Combining Network Adapter
(188) for use in performing the arithmetic and logical func-
tions of reduction operations. Computer program instructions
of a reduction routine in parallel communications library
(160) may latch an instruction for an arithmetic or logical
function into instruction register (169). When the arithmetic
or logical function of a reduction operation is a ‘sum’ or a
‘logical or,” for example, Global Combining Network Adapter
(188) may execute the arithmetic or logical operation by use
of ALU (166) in processor (164) or, typically much faster, by
use dedicated ALU (170).

The example compute node (152) of FIG. 2 includes a
direct memory access (‘DMA’) controller (195), which is
computer hardware for direct memory access and a DMA
engine (197), which is computer software for direct memory
access. The DMA engine (197) of FIG. 2 is typically stored in
computer memory of the DMA controller (195). Direct
memory access includes reading and writing to memory of
compute nodes with reduced operational burden on the cen-
tral processing units (164). A DMA transfer essentially copies
a block of memory from one location to another, typically
from one compute node to another. While the CPU may
initiate the DMA transfer, the CPU does not execute it.

For further explanation, FIG. 3A illustrates an exemplary
Point To Point Adapter (180) useful in systems capable of
minimally buffered data transfers between nodes in a data
communications network according to embodiments of the
present invention. Point To Point Adapter (180) is designed
for use in a data communications network optimized for point

US 9,065,839 B2

11

to point operations, a network that organizes compute nodes
in a three-dimensional torus or mesh. Point To Point Adapter
(180) in the example of FIG. 3A provides data communica-
tion along an x-axis through four unidirectional data commu-
nications links, to and from the next node in the —x direction
(182) and to and from the next node in the +x direction (181).
Point To Point Adapter (180) also provides data communica-
tion along a y-axis through four unidirectional data commu-
nications links, to and from the next node in the —y direction
(184) and to and from the next node in the +y direction (183).
Point To Point Adapter (180) in FIG. 3A also provides data
communication along a z-axis through four unidirectional
data communications links, to and from the next node in the
-z direction (186) and to and from the next node in the +z
direction (185).

For further explanation, FIG. 3B illustrates an exemplary
Global Combining Network Adapter (188) useful in systems
capable of minimally buffered data transfers between nodes
in a data communications network according to embodiments
of'the present invention. Global Combining Network Adapter
(188)is designed for use in a network optimized for collective
operations, a network that organizes compute nodes of a
parallel computer in a binary tree. Global Combining Net-
work Adapter (188) in the example of FIG. 3B provides data
communication to and from two children nodes through four
unidirectional data communications links (190). Global
Combining Network Adapter (188) also provides data com-
munication to and from a parent node through two unidirec-
tional data communications links (192).

For further explanation, FIG. 4 sets forth a line drawing
illustrating an exemplary data communications network
(108) optimized for point to point operations useful in sys-
tems capable of minimally buffered data transfers between
nodes in a data communications network in accordance with
embodiments of the present invention. In the example of FIG.
4, dots represent compute nodes (102) of a parallel computer,
and the dotted lines between the dots represent data commu-
nications links (103) between compute nodes. The data com-
munications links are implemented with point to point data
communications adapters similar to the one illustrated for
example in FIG. 3A, with data communications links on three
axes, X, y, and z, and to and fro in six directions +x (181), -x
(182), +y (183), —y (184), +z (185), and -z (186). The links
and compute nodes are organized by this data communica-
tions network optimized for point to point operations into a
three dimensional mesh (105). The mesh (105) has wrap-
around links on each axis that connect the outermost compute
nodes in the mesh (105) on opposite sides of the mesh (105).
These wrap-around links form part of a torus (107). Each
compute node in the torus has a location in the torus that is
uniquely specified by a set of x, y, z coordinates. Readers will
note that the wrap-around links in the y and z directions have
been omitted for clarity, but are configured in a similar man-
ner to the wrap-around link illustrated in the x direction. For
clarity of explanation, the data communications network of
FIG. 4 is illustrated with only 27 compute nodes, but readers
will recognize that a data communications network optimized
for point to point operations for use in minimally buffered
data transfers between nodes in a data communications net-
work in accordance with embodiments of the present inven-
tion may contain only a few compute nodes or may contain
thousands of compute nodes.

For further explanation, FIG. 5 sets forth a line drawing
illustrating an exemplary data communications network
(106) optimized for collective operations useful in systems
capable of minimally buffered data transfers between nodes
in a data communications network in accordance with

15

40

45

55

12

embodiments of the present invention. The example data
communications network of FIG. 5 includes data communi-
cations links connected to the compute nodes so as to orga-
nize the compute nodes as a tree. In the example of FIG. 5,
dots represent compute nodes (102) of a parallel computer,
and the dotted lines (103) between the dots represent data
communications links between compute nodes. The data
communications links are implemented with global combin-
ing network adapters similar to the one illustrated for example
in FIG. 3B, with each node typically providing data commu-
nications to and from two children nodes and data communi-
cations to and from a parent node, with some exceptions.
Nodes in a binary tree (106) may be characterized as a physi-
cal root node (202), branch nodes (204), and leaf nodes (206).
The root node (202) has two children but no parent. The leaf
nodes (206) each has a parent, but leafnodes have no children.
The branch nodes (204) each has both a parent and two
children. The links and compute nodes are thereby organized
by this data communications network optimized for collec-
tive operations into a binary tree (106). For clarity of expla-
nation, the data communications network of FIG. 5 is illus-
trated with only 31 compute nodes, but readers will recognize
that a data communications network optimized for collective
operations for use in systems for minimally buffered data
transfers between nodes in a data communications network
accordance with embodiments of the present invention may
contain only a few compute nodes or may contain thousands
of compute nodes.

In the example of FIG. 5, each node in the tree is assigned
a unit identifier referred to as a ‘rank’ (250). A node’s rank
uniquely identifies the node’s location in the tree network for
use in both point to point and collective operations in the tree
network.

The ranks in this example are assigned as integers begin-
ning with 0 assigned to the root node (202), 1 assigned to the
first node in the second layer of the tree, 2 assigned to the
second node in the second layer of the tree, 3 assigned to the
first node in the third layer of the tree, 4 assigned to the second
node in the third layer of the tree, and so on. For ease of
illustration, only the ranks of the first three layers of the tree
are shown here, but all compute nodes in the tree network are
assigned a unique rank.

For further explanation, FIG. 6 sets forth a block diagram
illustrating an exemplary communications architecture illus-
trated as a protocol stack useful in minimally buffered data
transfers between nodes in a data communications network
according to embodiments of the present invention. The
exemplary communications architecture of FIG. 6 sets forth
two nodes, an origin node (600) and a target node (604). Only
two nodes are illustrated in the example of FIG. 6 for ease of
explanation and not for limitation. In fact, minimally buffered
data transfers between nodes in a data communications net-
work according to embodiments of the present invention may
be implemented using many nodes in very large scale com-
puter systems such as parallel computers with thousands of
nodes.

The exemplary communications architecture of FIG. 6
includes an application layer (602) composed of an applica-
tion (158) installed on the origin node (600) and an applica-
tion (606) installed on the target node (604). In the example of
FIG. 6, the applications (158, 606) typically communicate by
passing messages. Data communications between applica-
tions (158, 606) are effected using messaging modules (160,
612) installed on each of the nodes (600, 604). Applications
(158, 606) may communicate by invoking function of an
application programming interfaces (‘API”) exposed by the
application messaging modules (606, 612). For the applica-

US 9,065,839 B2

13

tion (158) to transmit an application message to the applica-
tion (606), the application (158) of FIG. 6 may invoke a
function of an API for messaging module (160) that passes a
buffer identifier of an application bufter containing the appli-
cation message to the messaging module (160).

The exemplary communications architecture of FIG. 6
includes a messaging layer (610) that implements data com-
munications protocols for data communications that support
messaging in the application layer (602). Such data commu-
nications protocols are typically invoked through a set of APIs
that are exposed to the applications (158 and 606) in the
application layer (602). In the example of FIG. 6, the mes-
saging layer (610) is composed of messaging module (160)
installed on the origin node (600) and messaging module
(612) installed on the target node (604).

The exemplary communications architecture of FIG. 6
includes a hardware layer (634) that defines the physical
implementation and the electrical implementation of aspects
of'the hardware on the nodes such as the bus, network cabling,
connector types, physical data rates, data transmission encod-
ing and may other factors for communications between the
nodes (600 and 604) on the physical network medium. The
hardware layer (634) of FIG. 6 is composed of communica-
tions hardware (636) of the origin node (600), communica-
tions hardware (638) of the target node (636), and the data
communications network (108) connecting the origin node
(600) to the target node (604). Such communications hard-
ware may include, for example, point-to-point adapters and
DMA controllers as described above with reference to FIGS.
2 and 3A. In the example of FIG. 6, the communications
hardware (636) includes a transmission stack (630) for stor-
ing network packets for transmission to other communica-
tions hardware through the data communications network
(108) and includes a reception stack (632) for storing network
packets received from other communications hardware
through the data communications network (108).

The exemplary communications architecture of FIG. 6
illustrates a DMA engine (197) for the origin node (600) and
a DMA engine (640) for the target node (604). The DMA
engine (197) in the example of FIG. 6 is illustrated in both the
messaging module layer (610) and the hardware layer (634).
The DMA engine (197) is shown in both the messaging layer
(610) and the hardware layer (634) because a DMA engine
useful in minimally buffered data transfers between nodes in
adata communications network according to embodiments of
the present invention may often provide messaging layer
interfaces and also implement communications according to
some aspects of the communication hardware layer (634).
The exemplary DMA engine (197) of FIG. 6 includes an
injection first-in-first-out (‘FIFO’) buffer (628) for storing
data descriptors (618) that specify DMA transfer operations
for transferring data. The exemplary DMA engine (197) of
FIG. 6 also includes a reception FIFO bufter (626) used to
receive network packets (619) from other DMA engines on
other nodes. Although FIG. 6 only illustrates a single injec-
tion FIFO buffer (628) and a single reception FIFO buffer
(626), readers will note that a DMA engine may have access
to any number of injection FIFO buffers and reception FIFO
buffers.

The exemplary communications architecture of FIG. 6
supports minimally buffered data transfers between nodes in
adata communications network according to embodiments of
the present invention as follows: In the example of FIG. 6, the
origin messaging module (160) receives a storage identifier, a
complex origin data type, and a complex target data type from
the application (158) on the origin node (600). The storage
identifier (620) specifies origin application storage (608) con-

15

20

40

45

50

14

taining data (616) on the origin node (600). The complex
origin data type (622) describes a subset (648) of the data
(616) contained in the application storage (608). In the
example of FIG. 6, the data (616) is illustrated as a set of eight
blocks and the data subset (648) is illustrated as a set of four
grey blocks among the data (616). The complex target data
type (624) describes an arrangement of the subset (648) of the
data (616) in target application storage (614) on a target node
(604). The origin messaging module (160) of FIG. 6 then
creates origin metadata (642) describing the complex origin
data type. The origin messaging module (160) selects the
subset (648) of the data (616) for transmission to the target
node (604) from the origin application storage (608) in
dependence upon the origin metadata (642) and the storage
identifier (620). The origin messaging module (160) then
transmits, to the target messaging module (612) on the target
node (604), the selected subset (648) of the data for storing in
the target application storage (614) in dependence upon the
complex target data type (624) without buffering the subset
(648) of the data (616) in a temporary buffer on the target
node (604).

A data type describes the representation, interpretation,
and structure of a data set stored in computer memory. A
complex data type is a data type composed of a set of primi-
tive data types such as, for example, integer numbers, Bool-
eans, floating point numbers, and so on. A complex data type
may be implemented as, for example, a vector, a matrix, a
particular set of elements in a vector, a particular set of ele-
ments or rows or columns of a matrix, and so on. A complex
data type is often specified in terms of the primitive data types
of which it is composed. For example, a complex data type
may specify each primitive data type included in the complex
datatype and the offset for each primitive data type. Consider,
for further explanation, that the four elements of the data
subset (648) in FI1G. 6 each represent an integer number. The
complex origin data type (622) describing the data subset
(648) in the origin application storage (608) may be imple-
mented as the following exemplary complex data type:

TABLE 1

EXEMPLARY COMPLEX DATA TYPE

OFFSET DATA TYPE
1 Integer
2 Integer
5 Integer
7 Integer

The exemplary complex data type above describes a data
set in which two integers are stored adjacently in computer
memory at offsets of 1 byte and 2 bytes, one integer is stored
in computer memory at an offset of five bytes, and one integer
is stored in computer memory at an offset of seven bytes.
Readers will note that the exemplary complex data type above
is for explanation and not for limitation.

Whereas primitive data types typically describe data that is
stored contiguously in computer memory, complex data types
may describe data that is stored contiguously or non-contigu-
ously in computer memory. Consider the data (616) in FIG. 6.
The entire set of the data (616) is stored contiguously in origin
application storage (608), but the subset (648) of the data
(616) is stored non-contiguously in the origin application
storage (608) because the subset (648) of the data (616) is
stored in three non-adjacent chunks in the origin application
storage (608).

US 9,065,839 B2

15

As mentioned above, the origin metadata (642) of FIG. 6
describes the complex origin data type (622). Metadata may
describe a complex data type by specifying, for each contigu-
ous chunk of data described by the complex data type, an
offset describing a location of the contiguous chunk in com-
puter memory and a length describing the size of the contigu-
ous chunk. For further explanation, consider again, the exem-
plary complex data type in Table 1 above. Also consider that
each of the four elements in the data subset (648) in FIG. 6
represent a one-byte integer number. The origin metadata
(642) describing the complex origin data type (622) may be
implemented as the following exemplary metadata:

TABLE 2
EXEMPLARY METADATA
OFFSET LENGTH
1 2
5 1
7 1

The exemplary metadata in Table 2 above describes the
exemplary complex data type in Table 1. The exemplary
metadata in Table 2 above specifies that two bytes of data
exists at an offset of one byte, one byte of data exists at an
offset of five bytes, and one byte of data exists at an offset of
seven bytes. Readers will note that the exemplary metadata
above is for explanation and not for limitation. Readers will
also note that such metadata may used by nodes for storing or
retrieving data in computer memory without actually having
to recognize or interpret the complex data type on which the
metadata is based. For example, when a node attempts to
access computer memory according to the exemplary com-
plex data type in Table 1, such a node must also recognize that
the primitive integer data type used in the exemplary complex
data type is a one-byte integer, as opposed to a two-byte or
four-byte integer. Because the exemplary metadata in Table 1
does not refer to any primitive data types such as, integer,
floating point, and so on, the exemplary metadata may be used
by any node to retrieve or store the data subset regardless of
whether the node recognizes the primitive data types on
which the metadata is based.

As mentioned above, the messaging module (160) of FIG.
6 receives both a complex origin data type and a complex
target data type. In some embodiments of minimally buffered
data transfers between nodes in a data communications net-
work, the complex target data type is the same as the complex
origin data type. In such embodiments, the origin messaging
module (160) may transmit, to the target messaging module
(612) on the target node (604), the selected subset (648) of the
data for storing in the target application storage (614) in
dependence upon the complex target data type (624) without
buffering the subset (648) of the data (616) in a temporary
buffer on the target node (604) by contiguously storing the
selected subset (648) of the data (616) in a temporary buffer
(646) on the origin node (600) and transmitting, from the
temporary buffer (646) on the origin node (600) in a single
data transfer operation, the subset (648) of the data (616)
along with the origin metadata (642) describing the complex
origin data type (622). In this manner, the target node (600)
may store the subset (648) of the data (616) in the target
application storage (614) without having to recognize the
complex origin target data type (622).

In some embodiments where the complex target data type
(624) is not the same as the complex origin data type (622),
the origin messaging module (160) may create target meta-

10

15

20

25

30

35

40

45

50

55

60

65

16

data (644) describing the complex target data type (624). The
origin messaging module (160) may then transmit, to the
target messaging module (612) on the target node (604), the
selected subset (648) of the data for storing in the target
application storage (614) in dependence upon the complex
target data type (624) without buffering the subset (648) of the
data (616) in a temporary buffer on the target node (604) by
contiguously storing the selected subset (648) of the data
(616) in a temporary buffer (646) on the origin node (600),
and transmitting, from the temporary buffer (646) on the
origin node (600) in multiple data transfer operations, the
selected subset (648) of the data (616) according to the target
metadata (644).

In other embodiments where the complex target data type
(624) is not the same as the complex origin data type (622),
the origin messaging module (160) may transmit, to the target
messaging module (612) on the target node (604), the
selected subset (648) of the data for storing in the target
application storage (614) in dependence upon the complex
target data type (624) without buffering the subset (648) of the
data (616) in a temporary buffer on the target node (604) by
transmitting, directly from the origin application storage
(608) in multiple data transfer operations, the selected subset
(648) of the data (616) according to both the origin metadata
(642) and the target metadata (644).

For further explanation, FIG. 7 sets forth a flow chart
illustrating an exemplary method for minimally buffered data
transfers between nodes in a data communications network
according to embodiments of the present invention. The
method of FIG. 7 includes receiving (700), by an origin
messaging module (160) on an origin node (600) from an
application (158) on the origin node (600), a storage identifier
(620), a complex origin data type (622), and a complex target
data type. The origin messaging module (160) may receive
(700) a storage identifier (620), a complex origin data type
(622), and a complex target data type from the application
(158) according to the method of FIG. 7 as parameters to a call
made by the application (158) to a function of an application
programming interface (‘API’) exposed by the messaging
module (160).

The storage identifier (620) of FIG. 7 specifies origin appli-
cation storage (608) containing data (616) on the origin node
(600). The origin application storage (608) represents com-
puter memory on the origin node (600) allocated to the appli-
cation (158) foruse in data processing. In the example of FIG.
7, the data (616) contained in the origin application storage
(608) illustrated as eight blocks, each block representing a
chunk of the data (616).

In the example of FIG. 7, the complex origin data type
(622) describes a subset (648) of the data (616) contained in
the origin application storage (608). The subset (648) of the
data (616) is illustrated in FIG. 7 as a set of grey blocks. As
mentioned above, a data type describes the representation,
interpretation, and structure of a data set stored in computer
memory. A complex data type is a data type composed of a set
of primitive data types such as, for example, integer numbers,
Booleans, floating point numbers, and so on. A complex data
type may be implemented as, for example, a vector, a matrix,
a particular set of elements in a vector, a particular set of
elements or rows or columns of a matrix, and so on. A com-
plex data type is often specified in terms of the primitive data
types of which it is composed. For example, a complex data
type may specify each primitive data type included in the
complex data type and the offset for each primitive data type
as illustrated in exemplary Table 1 above.

A complex target data type (not shown) describes an
arrangement of the subset (648) of the data (616) in target

US 9,065,839 B2

17

application storage (614) on a target node (604). Readers will
note that the complex target data type is omitted from FIG. 7
because, in the example of FIG. 7, the complex target data
type is the same as the complex origin datatype (622). That is,
the complex target data type specifies arranging the data
subset (648) in target application storage (614) in the same
manner as the complex origin data type specifies the arrange-
ment of the data subset (648) in the origin application storage
(608).

The method of FIG. 7 also includes creating (702), by the
origin messaging module (160), origin metadata (642)
describing the complex origin data type (622). As mentioned
above, metadata may describe a complex data type by speci-
fying, for each contiguous chunk of data described by the
complex data type, an offset describing a location of the
contiguous chunk in computer memory and a length describ-
ing the size of the contiguous chunk. The origin messaging
module (160) may create (702) origin metadata (642)
describing the complex origin data type (622) according to
the method of FIG. 7 by identifying the offset and length of
each chunk of adjacent primitive data types described by the
complex origin data type (622) and storing the offset and
length in a table. Consider, for example, that the exemplary
complex origin data type in Table 1 above describes the data
subset (648) in FIG. 7. Such an exemplary complex origin
data type specifies three chunks of adjacent primitive data
types. The first chunk has an offset of one byte from the
beginning of origin application storage (608) and has a length
of two bytes, one byte for each adjacent integer. The second
chunk has an offset of five bytes from the beginning of origin
application storage (608) and has a length of one byte. The
third chunk has an offset of seven bytes from the beginning of
origin application storage (608) and has a length of one byte.
The result of identifying the offset and length of each chunk
of adjacent primitive data types described by the exemplary
complex origin data type in Table 1 and storing the offset and
length in a table are illustrated in Table 2 above.

The method of FIG. 7 includes selecting (704), by the
origin messaging module (160) from the origin application
storage (608) in dependence upon the origin metadata (642)
and the storage identifier (620), the subset (648) of the data
(616) for transmission to the target node (604). The origin
messaging module (160) may select (704) the data subset
(648) from the origin application storage (608) according to
the method of FIG. 7 by identifying beginning of the origin
application storage (608) using the storage identifier (620)
and locating the data subset (648) using the offsets and
lengths specified in the origin metadata.

The method of FIG. 7 also includes transmitting (706), by
the origin messaging module (160) to a target messaging
module (612) on the target node (604), the selected subset
(648) of the data (616) for storing in the target application
storage (608) in dependence upon the complex target data
type (622) without buftering the subset (648) of the data (616)
in a temporary buffer (646) on the target node (604). The
origin messaging module (160) may transmit (706) the
selected subset (648) of the data (616) for storing in the target
application storage (608) according to the method of FIG. 7
by contiguously storing (708) the selected subset (648) of the
data (616) in a temporary buffer (646) on the origin node
(600) and transmitting (710), from the temporary buffer (646)
onthe originnode (600) in a single data transfer operation, the
subset (648) of the data (616) along with the origin metadata
(642) describing the complex origin data type (622). Trans-
mitting (710) the subset (648) of the data (616) along with the
origin metadata (642) describing the complex origin data type
(622) according to the method of FIG. 7 may be carried out by

35

40

45

18

pre-pending the origin metadata (642) to the contiguous data
subset (648), packetizing the metadata (642) and the data
subset (648), and injecting the packets into the network for
transmission to the target node (604). Readers will note that
the origin metadata need only be transmitted to the target
node (604) once in environments where the data subset (648)
is repeatedly transmitted to the target node (604). The target
node (604) may then cache the origin metadata for using in
storing the data subset (648) received in subsequent data
transfers.

The method of FIG. 7 also includes storing (712), by the
target messaging module (612), the data subset (648) in target
application storage (614) in dependence upon the complex
target data type, which in the example of FIG. 7 is the same as
the complex origin data type (622). The target messaging
module (612) may store (712) the data subset (648) in target
application storage (614) according to the method of FIG. 7
by storing the data subset (648) in the target application
storage (614) directly from the network packets received
from the origin node (600) using the offsets and lengths
specified in the origin metadata (642). In such a manner, the
target node (604) is able to reconstitute the data subset (648)
in the target application storage (614) in the same arrange-
ment as the data subset (648) was arranged in the origin
application storage (608) without the target messaging mod-
ule (612) having to recognize the complex origin data type
(622) or temporarily store the data subset (648) in a temporary
buffer on the target node (604).

The description above with reference to FIG. 7 explains
minimally buffered data transfers between nodes in a data
communications network according to embodiments of the
present invention in which the complex target data type and
the complex origin data type are the same. Readers will note,
however, that in other embodiments the complex target data
type and the complex origin data type are not the same. For
further explanation, FIG. 8 sets forth a flow chart illustrating
a further exemplary method for minimally buffered data
transfers between nodes in a data communications network
according to embodiments of the present invention.

The method of FIG. 8 is similar to the method of FIG. 7.
That is, the method of FIG. 8 includes receiving (700), by an
origin messaging module (160) on an origin node (600) from
an application (158) on the origin node (600), a storage iden-
tifier (620), a complex origin data type (622), and a complex
target data type (624), the storage identifier (620) specitying
origin application storage (608) containing data (616) on the
origin node (600), the complex origin data type (622) describ-
ing a subset (648) of the data (616) contained in the origin
application storage (608), the complex target data type (624)
describing an arrangement of the subset (648) of the data
(616) in target application storage (614) on a target node
(604); creating (702), by the origin messaging module (160),
origin metadata (642) describing the complex origin data type
(622); selecting (704), by the origin messaging module (160)
from the origin application storage (608) in dependence upon
the origin metadata (642) and the storage identifier (620), the
subset (648) of the data (616) for transmission to the target
node (604); and transmitting (706), by the origin messaging
module (160) to a target messaging module (612) on the
target node (604), the selected subset (648) of the data (616)
for storing in the target application storage (608) in depen-
dence upon the complex target data type (622) without buft-
ering the subset (648) of the data (616) in a temporary buffer
(646) on the target node (604).

The method of FIG. 8 differs from the method of FIG. 7 in
that the method of FIG. 8 includes creating (800), by the
origin messaging module (160), target metadata (644)

US 9,065,839 B2

19

describing the complex target data type (624). The origin
messaging module (160) may create (800) the target metadata
(644) describing the complex target data type (624) according
to the method of FIG. 8 by identifying the offset and length of
each chunk of adjacent primitive data types described by the
complex target data type (624) and storing the offset and
length in a table. For example, consider the following exem-
plary complex data type that describes the arrangement of the
data subset (648) in the target application storage (614):

TABLE 3

EXEMPLARY COMPLEX DATA TYPE

OFFSET DATATYPE

0 Integer
3 Integer
5 Integer
6 Integer

The exemplary complex data type above describes a data
set in which an integer is stored at an oftset of 0 bytes from the
beginning of the target application storage (614), an integer is
stored at an offset of 3 bytes from the beginning of the target
application storage (614), and two integers are stored at oft-
sets of 5 bytes and 6 bytes from the beginning of the target
application storage (614).

Identifying the offset and length of each chunk of adjacent
primitive data types described by the exemplary complex
target data type illustrated in Table 3 and storing the offset and
length in a table may yield the following exemplary target
metadata:

TABLE 4
EXEMPLARY METADATA
OFFSET LENGTH
0 1
3 1
5 2

The exemplary metadata in Table 4 above describes the
exemplary complex data type in Table 3. The exemplary
metadata in Table 4 above specifies that one byte of data exists
at an offset of zero bytes, one byte of data exists at an offset of
three bytes, and two bytes of data exists at an offset of five
bytes. Readers will note that the exemplary complex target
data type and exemplary target metadata above are for expla-
nation and not for limitation.

Inthe method of FIG. 8, the origin messaging module (160)
may transmit (706) the selected subset (648) of the data (616)
for storing in the target application storage (608) by contigu-
ously storing (708) the selected subset (648) of the data (616)
in a temporary buffer (646) on the origin node (600) and
transmitting (802), from the temporary buffer (646) on the
origin node (600) in multiple data transfer operations, the
selected subset (648) of the data (616) according to the target
metadata (644). Transmitting (802), from the temporary
buffer (646) on the origin node (600) in multiple data transfer
operations, the selected subset (648) of the data (616) accord-
ing to the target metadata (644) according to the method of
FIG. 8 may be carried out by selecting, for each contiguous
chunk of data specified in the target metadata (644), a portion
of the data subset (648) having a length that matches the
length specified in the target metadata (644), packetizing the
selected portion, and injecting the packets into a network for

5

10

15

20

25

30

35

40

45

50

55

60

65

20

transmission to the target node (604). For further explanation,
consider again the exemplary target metadata in Table 4
above. Because the first chunk of data specified in the exem-
plary target metadata has a length of one byte, one byte of the
data subset (648) in the temporary buffer (646) is transmitted
to the target node (604) in a first data transfer operation.
Because the second chunk of data specified in the exemplary
target metadata has a length of one byte, one byte of the data
subset (648) in the temporary buffer (646) is transmitted to
the target node (604) in a second data transfer operation.
Because the third chunk of data specified in the exemplary
target metadata has a length of two bytes, the last two bytes of
the data subset (648) in the temporary buffer (646) is trans-
mitted to the target node (604) in a third data transfer opera-
tion.

The method of FIG. 8 also includes storing (712), by the
target messaging module (612), the data subset (648) in target
application storage (614) in dependence upon the complex
target data type (624). The target messaging module (612)
may store (712) the data subset (648) in target application
storage (614) in dependence upon the complex target data
type (624) according to the method of FIG. 8 by storing the
data subset (648) in the target application storage (614)
directly from the network packets received from the origin
node (600). Each chunk of the data subset (648) partitioned
according to the target metadata (644), which in turn is cre-
ated from the complex target data type (624), specifies the
memory location on target node (604) where the target node
(604) should store that particular chunk of the data subset
(648). In such a manner, the target node (604) is able to
reconstitute the data subset (648) in the target application
storage (614) in arrangement recognizable to the target appli-
cation (606) without the target messaging module (612) hav-
ing to store the data subset (648) in a temporary buffer on the
target node (604).

In some embodiments of minimally buffered data transfers
between nodes in a data communications network, the mes-
saging module (160) may combine both the origin metadata
and the target metadata for use in transmitting the data subset
to the target node. For further explanation, FIG. 9 sets forth a
flow chart illustrating a further exemplary method for mini-
mally buffered data transfers between nodes in a data com-
munications network according to the present invention.

The method of FIG. 9 is similar to the method of FIG. 8.
That is, the method of FIG. 9 includes receiving (700), by an
origin messaging module (160) on an origin node (600) from
an application (158) on the origin node (600), a storage iden-
tifier (620), a complex origin data type (622), and a complex
target data type (624), the storage identifier (620) specitying
origin application storage (608) containing data (616) on the
origin node (600), the complex origin data type (622) describ-
ing a subset (648) of the data (616) contained in the origin
application storage (608), the complex target data type (624)
describing an arrangement of the subset (648) of the data
(616) in target application storage (614) on a target node
(604); creating (702), by the origin messaging module (160),
origin metadata (642) describing the complex origin data type
(622); creating (800), by the origin messaging module (160),
target metadata (644) describing the complex target data type
(624); selecting (704), by the origin messaging module (160)
from the origin application storage (608) in dependence upon
the origin metadata (642) and the storage identifier (620), the
subset (648) of the data (616) for transmission to the target
node (604); and transmitting (706), by the origin messaging
module (160) to a target messaging module (612) on the
target node (604), the selected subset (648) of the data (616)
for storing in the target application storage (608) in depen-

US 9,065,839 B2

21

dence upon the complex target data type (622) without buft-
ering the subset (648) of the data (616) in a temporary buffer
(646) on the target node (604).

Inthe method of FIG. 9, the origin messaging module (160)
may transmit (706) the selected subset (648) of the data (616)
for storing in the target application storage (608) by transmit-
ting (900), from the origin application storage (608) in mul-
tiple data transfer operations, the selected subset (648) of the
data (616) according to both the origin metadata (642) and the
target metadata (644). Transmitting (900), from the origin
application storage (608) in multiple data transfer operations,
the selected subset (648) of the data (616) according to both
the origin metadata (642) and the target metadata (644)
according to the method of FIG. 9 may be carried out by
selecting, for each common contiguous chunks of data speci-
fied in both the origin metadata (642) and the target metadata
(644), a portion of the data subset (648) having a length that
matches the length of the common contiguous chunk, pack-
etizing the selected portion, and injecting the packets into a
network for transmission to the target node (604).

For further explanation of the common continuous chunks
of data specified in both the origin metadata (642) and the
target metadata (644), F1G. 9 illustrates a graphical represen-
tation (902) of the target metadata (644) and a graphical
representation (904) of the origin metadata (642). The graphi-
cal representations (902, 904) are based on the exemplary
origin metadata and the exemplary target metadata in Tables
2 and 4, respectively. The graphical representation (902) of
the target metadata (644) illustrates a first contiguous chuck
of one byte, a second contiguous chunk of one byte, and a
third contiguous chunk of two bytes. The graphical represen-
tation (904) of the origin metadata (642) illustrates a first
contiguous chuck of two bytes, a second contiguous chunk of
one byte, and a third contiguous chunk of one byte. The
graphical representation (906) depicts the common contigu-
ous chunks of data specified in both the origin metadata (642)
and the target metadata (644). The graphical representation
(906) illustrates a first common contiguous chunk of one byte,
a second common contiguous chunk of one byte, a third
common contiguous chunk of one byte, and a fourth common
contiguous chunk of one byte.

In the example of FIG. 9, because the first common con-
tiguous chunk of data specified in both the exemplary target
metadata and exemplary origin metadata has a length of one
byte, one byte of the data subset (648) in the temporary buffer
(646) is transmitted to the target node (604) in a first data
transfer operation. Because the second common contiguous
chunk of data specified in both the exemplary target metadata
and exemplary origin metadata has a length of one byte, the
next one byte of the data subset (648) in the temporary buffer
(646) is transmitted to the target node (604) in a second data
transfer operation. Because the third common contiguous
chunk of data specified in both the exemplary target metadata
and exemplary origin metadata has a length of one byte, the
next one byte of the data subset (648) in the temporary buffer
(646) is transmitted to the target node (604) in a third data
transfer operation. Because the fourth common contiguous
chunk of data specified in both the exemplary target metadata
and exemplary origin metadata has a length of one byte, the
next one byte of the data subset (648) in the temporary buffer
(646) is transmitted to the target node (604) in a fourth data
transfer operation.

The method of FIG. 9 also includes storing (712), by the
target messaging module (612), the data subset (648) in target
application storage (614) in dependence upon the complex
target data type (624). The target messaging module (612)
may store (712) the data subset (648) in target application

10

15

20

25

30

35

40

45

50

55

60

65

22

storage (614) in dependence upon the complex target data
type (624) according to the method of FIG. 9 by storing the
data subset (648) in the target application storage (614)
directly from the network packets received from the origin
node (600). Each chunk of the data subset (648) partitioned
according to the target metadata (644), which in turn is cre-
ated from the complex target data type (624), specifies the
memory location on target node (604) where the target node
(604) should store that particular chunk of the data subset
(648). In such a manner, the target node (604) is able to
reconstitute the data subset (648) in the target application
storage (614) in arrangement recognizable to the target appli-
cation (606) without the target messaging module (612) hav-
ing to store the data subset (648) in a temporary buffer on the
target node (604).

Exemplary embodiments of the present invention are
described largely in the context ofa fully functional computer
system for minimally buffered data transfers between nodes
in a data communications network. Readers of'skill in the art
will recognize, however, that the present invention also may
be embodied in a computer program product disposed on
computer readable media for use with any suitable data pro-
cessing system. Such computer readable media may be trans-
mission media or recordable media for machine-readable
information, including magnetic media, optical media, or
other suitable media. Examples of recordable media include
magnetic disks in hard drives or diskettes, compact disks for
optical drives, magnetic tape, and others as will occur to those
of skill in the art. Examples of transmission media include
telephone networks for voice communications and digital
data communications networks such as, for example, Ether-
nets™ and networks that communicate with the Internet Pro-
tocol and the World Wide Web as well as wireless transmis-
sion media such as, for example, networks implemented
according to the IEEE 802.11 family of specifications. Per-
sons skilled in the art will immediately recognize that any
computer system having suitable programming means will be
capable of executing the steps of the method of the invention
as embodied in a program product. Persons skilled in the art
will recognize immediately that, although some of the exem-
plary embodiments described in this specification are ori-
ented to software installed and executing on computer hard-
ware, nevertheless, alternative embodiments implemented as
firmware or as hardware are well within the scope of the
present invention.

It will be understood from the foregoing description that
modifications and changes may be made in various embodi-
ments of the present invention without departing from its true
spirit. The descriptions in this specification are for purposes
of illustration only and are not to be construed in a limiting
sense. The scope of the present invention is limited only by
the language of the following claims.

What is claimed is:

1. A method for minimally buffered data transfers between
nodes in a data communications network, the method com-
prising:

receiving, by an origin messaging module on an origin

node from an application on the origin node, a storage
identifier, a complex origin data type, and a complex
target data type, the storage identifier specifying origin
application storage containing data on the origin node,
the complex origin data type describing a subset of the
data contained in the origin application storage, the com-
plex target data type describing an arrangement of the
subset of the data in target application storage on a target
node;

US 9,065,839 B2

23

creating, by the origin messaging module, origin metadata

describing the complex origin data type;

selecting, by the origin messaging module from the origin

application storage in dependence upon the origin meta-
data and the storage identifier, the subset of the data for
transmission to the target node; and

transmitting, by the origin messaging module to a target

messaging module on the target node, the selected sub-
set of the data for storing in the target application storage
in dependence upon the complex target data type with-
out any type of buffering the subset of the data in a
temporary buffer on the target node.

2. The method of claim 1 wherein:

the complex target data type is the same as the complex

origin data type; and

transmitting, by the origin messaging module to a target

messaging module on the target node, the selected sub-
set of the data for storing in the target application storage
in dependence upon the complex target data type with-
out buffering the subset of the data in a temporary buffer
on the target node further comprises:

contiguously storing the selected subset of the data in a

temporary buffer on the origin node; and

transmitting, from the temporary buffer on the origin node

in a single data transfer operation, the subset of the data
along with the origin metadata describing the complex
origin data type.

3. The method of claim 1 wherein:

the method further comprises creating, by the origin mes-

saging module, target metadata describing the complex
target data type; and

transmitting, by the origin messaging module to a target

messaging module on the target node, the selected sub-
set of the data for storing in the target application storage
in dependence upon the complex target data type with-
out buffering the subset of the data in a temporary buffer
on the target node further comprises:

contiguously storing the selected subset of the data in a

temporary buffer on the origin node, and

transmitting, from the temporary buffer on the origin node

in multiple data transfer operations, the selected subset
of the data according to the target metadata.

4. The method of claim 1 wherein:

the method further comprises creating, by the origin mes-

saging module, target metadata describing the complex
target data type; and

transmitting, by the origin messaging module to a target

messaging module on the target node, the selected sub-
set of the data for storing in the target application storage
in dependence upon the complex target data type with-
out buffering the subset of the data in a temporary buffer
on the target node further comprises transmitting, from
the origin application storage in multiple data transfer
operations, the selected subset of the data according to
both the origin metadata and the target metadata.

5. The method of claim 1 wherein the origin metadata
specifies, for each contiguous chunk of data described by the
complex origin data type, an offset describing a location of
the contiguous chunk in the origin application storage and a
length describing the size of the contiguous chunk.

6. The method of claim 1 wherein the origin compute node
and the target compute node are comprised in a parallel com-
puter, the parallel computer comprising a plurality of com-
pute nodes connected for data communications through a
plurality of data communications networks, at least one of the
plurality of data communications networks optimized for

25

30

35

40

45

50

55

60

65

24

point to point data communications, and at least one of the
plurality of data communications networks optimized for
collective operations.

7. An apparatus for minimally buffered data transfers
between nodes in a data communications network, the appa-
ratus comprising a computer processor and computer
memory operatively coupled to the computer processor, the
computer memory having disposed within it computer pro-
gram instructions capable of:

receiving, by an origin messaging module on an origin
node from an application on the origin node, a storage
identifier, a complex origin data type, and a complex
target data type, the storage identifier specifying origin
application storage containing data on the origin node,
the complex origin data type describing a subset of the
data contained in the origin application storage, the com-
plex target data type describing an arrangement of the
subset of the data in target application storage on a target
node;

creating, by the origin messaging module, origin metadata
describing the complex origin data type;

selecting, by the origin messaging module from the origin
application storage in dependence upon the origin meta-
data and the storage identifier, the subset of the data for
transmission to the target node; and

transmitting, by the origin messaging module to a target
messaging module on the target node, the selected sub-
set of the data for storing in the target application storage
in dependence upon the complex target data type with-
out any type of buffering the subset of the data in a
temporary buffer on the target node.

8. The apparatus of claim 7 wherein:

the complex target data type is the same as the complex
origin data type; and

transmitting, by the origin messaging module to a target
messaging module on the target node, the selected sub-
set of the data for storing in the target application storage
in dependence upon the complex target data type with-
out buffering the subset of the data in a temporary buffer
on the target node further comprises:

contiguously storing the selected subset of the data in a
temporary buffer on the origin node; and

transmitting, from the temporary bufter on the origin node
in a single data transfer operation, the subset of the data
along with the origin metadata describing the complex
origin data type.

9. The apparatus of claim 7 wherein:

the computer memory has disposed within it computer
program instructions capable of creating, by the origin
messaging module, target metadata describing the com-
plex target data type; and

transmitting, by the origin messaging module to a target
messaging module on the target node, the selected sub-
set of the data for storing in the target application storage
according to the target metadata to select the subset of
data to be transmitted without buffering the subset of the
data in a temporary buffer on the target node further
comprises:

contiguously storing the selected subset of the data in a
temporary buffer on the origin node, and

transmitting, from the temporary bufter on the origin node
in multiple data transfer operations, the selected subset
of the data according to the target metadata.

US 9,065,839 B2

25

10. The apparatus of claim 7 wherein:

the computer memory has disposed within it computer
program instructions capable of creating, by the origin
messaging module, target metadata describing the com-
plex target data type; and

transmitting, by the origin messaging module to a target

messaging module on the target node, the selected sub-
set of the data for storing in the target application storage
in dependence upon the complex target data type with-
out buffering the subset of the data in a temporary buffer
on the target node further comprises transmitting, from
the origin application storage in multiple data transfer
operations, the selected subset of the data according to
both the origin metadata and the target metadata.

11. The apparatus of claim 7 wherein the origin metadata
specifies, for each contiguous chunk of data described by the
complex origin data type, an offset describing a location of
the contiguous chunk in the origin application storage and a
length describing the size of the contiguous chunk.

12. The apparatus of claim 7 wherein the origin compute
node and the target compute node are comprised in a parallel
computer, the parallel computer comprising a plurality of
compute nodes connected for data communications through a
plurality of data communications networks, at least one of the
plurality of data communications networks optimized for
point to point data communications, and at least one of the
plurality of data communications networks optimized for
collective operations.

13. A computer program product for minimally buffered
data transfers between nodes in a data communications net-
work, the computer program product disposed upon a com-
puter readable, recordable medium, the computer program
product comprising computer program instructions capable
of:

receiving, by an origin messaging module on an origin

node from an application on the origin node, a storage
identifier, a complex origin data type, and a complex
target data type, the storage identifier specifying origin
application storage containing data on the origin node,
the complex origin data type describing a subset of the
data contained in the origin application storage, the com-
plex target data type describing an arrangement of the
subset of the data in target application storage on a target
node;

creating, by the origin messaging module, origin metadata

describing the complex origin data type;

selecting, by the origin messaging module from the origin

application storage in dependence upon the origin meta-
data and the storage identifier, the subset of the data for
transmission to the target node; and

transmitting, by the origin messaging module to a target

messaging module on the target node, the selected sub-
set of the data for storing in the target application storage
in dependence upon the complex target data type with-
out any type of buffering the subset of the data in a
temporary buffer on the target node.

14. The computer program product of claim 13 wherein:

the complex target data type is the same as the complex

origin data type; and

10

15

20

25

30

35

40

45

50

55

26

transmitting, by the origin messaging module to a target
messaging module on the target node, the selected sub-
set of the data for storing in the target application storage
in dependence upon the complex target data type with-
out buffering the subset of the data in a temporary buffer
on the target node further comprises:

contiguously storing the selected subset of the data in a

temporary buffer on the origin node; and

transmitting, from the temporary bufter on the origin node

in a single data transfer operation, the subset of the data
along with the origin metadata describing the complex
origin data type.

15. The computer program product of claim 13 wherein:

the computer program product further comprises computer

program instructions capable of creating, by the origin
messaging module, target metadata describing the com-
plex target data type; and

transmitting, by the origin messaging module to a target

messaging module on the target node, the selected sub-
set of the data for storing in the target application storage
according to the target metadata without buffering the
subset of the data in a temporary buffer on the target
node further comprises:

contiguously storing the selected subset of the data in a

temporary buffer on the origin node, and

transmitting, from the temporary bufter on the origin node

in multiple data transfer operations, the selected subset
of the data according to the target metadata.

16. The computer program product of claim 13 wherein:

the computer program product further comprises computer

program instructions capable of creating, by the origin
messaging module, target metadata describing the com-
plex target data type; and

transmitting, by the origin messaging module to a target

messaging module on the target node, the selected sub-
set of the data for storing in the target application storage
in dependence upon the complex target data type with-
out buffering the subset of the data in a temporary buffer
on the target node further comprises transmitting, from
the origin application storage in multiple data transfer
operations, the selected subset of the data according to
both the origin metadata and the target metadata.

17. The computer program product of claim 13 wherein the
origin metadata specifies, for each contiguous chunk of data
described by the complex origin data type, an offset describ-
ing a location of the contiguous chunk in the origin applica-
tion storage and a length describing the size of the contiguous
chunk.

18. The computer program product of claim 13 wherein the
origin compute node and the target compute node are com-
prised in a parallel computer, the parallel computer compris-
ing a plurality of compute nodes connected for data commu-
nications through a plurality of data communications
networks, at least one of the plurality of data communications
networks optimized for point to point data communications,
and at least one of the plurality of data communications
networks optimized for collective operations.

#* #* #* #* #*

